Spaces:
Running
Running
File size: 11,933 Bytes
5e58a2d 1e0350f 5e58a2d 1e0350f 5e58a2d 1e0350f 5e58a2d b7719bf 5e58a2d 1e0350f 85e6b5b b7719bf 5e58a2d 1e0350f 5e58a2d 1e0350f 5e58a2d b7719bf 5e58a2d b7719bf 1e0350f b7719bf 5e58a2d b7719bf 5e58a2d 1e0350f b7719bf a1bb249 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 09db53f 5e58a2d 09db53f 5e58a2d b7719bf 09db53f 5e58a2d b7719bf 5e58a2d 1e0350f 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d 1e0350f 5e58a2d b7719bf 5e58a2d 09db53f 5e58a2d b7719bf 5e58a2d 85e6b5b 5e58a2d 85e6b5b 1e0350f 5e58a2d 1e0350f 5e58a2d 1e0350f b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d 09db53f 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d 09db53f 5e58a2d 85e6b5b 5e58a2d 85e6b5b 1e0350f 5e58a2d b7719bf 5e58a2d 1e0350f 5e58a2d 1e0350f 09db53f 5e58a2d 09db53f 85e6b5b b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d b7719bf 5e58a2d 1e0350f 5e58a2d 1e0350f 5e58a2d 1e0350f 5e58a2d 1e0350f b7719bf 1e0350f 5e58a2d 1e0350f 09db53f 5e58a2d b7719bf 5e58a2d 09db53f b7719bf a1bb249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
# Install necessary libraries (if not already installed)
# pip install langchain streamlit requests langgraph typing-extensions
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.schema import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph, START
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
from typing_extensions import TypedDict, Annotated
from typing import Sequence
import re
import os
import streamlit as st
import requests
from langchain.tools.retriever import create_retriever_tool
# Create Dummy Data
research_texts = [
"Research Report: Results of a New AI Model Improving Image Recognition Accuracy to 98%",
"Academic Paper Summary: Why Transformers Became the Mainstream Architecture in Natural Language Processing",
"Latest Trends in Machine Learning Methods Using Quantum Computing"
]
development_texts = [
"Project A: UI Design Completed, API Integration in Progress",
"Project B: Testing New Feature X, Bug Fixes Needed",
"Product Y: In the Performance Optimization Stage Before Release"
]
# Text splitting settings
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
# Generate Document objects from text
research_docs = splitter.create_documents(research_texts)
development_docs = splitter.create_documents(development_texts)
# Create vector stores using OpenAI embeddings
embeddings = OpenAIEmbeddings(
model="text-embedding-3-large"
)
research_vectorstore = Chroma.from_documents(
documents=research_docs,
embedding=embeddings,
collection_name="research_collection"
)
development_vectorstore = Chroma.from_documents(
documents=development_docs,
embedding=embeddings,
collection_name="development_collection"
)
research_retriever = research_vectorstore.as_retriever()
development_retriever = development_vectorstore.as_retriever()
# Create retriever tools
research_tool = create_retriever_tool(
research_retriever, # Retriever object
"research_db_tool", # Tool name
"Search information from the research database." # Description
)
development_tool = create_retriever_tool(
development_retriever,
"development_db_tool",
"Search information from the development database."
)
# Combine the created tools
tools = [research_tool, development_tool]
# Define the agent state type
class AgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
# Define the agent function for processing user questions
def agent(state: AgentState):
print("---CALL AGENT---")
messages = state["messages"]
if isinstance(messages[0], tuple):
user_message = messages[0][1]
else:
user_message = messages[0].content
# Structured prompt for the agent
prompt = f"""Given this user question: "{user_message}"
If it's about research or academic topics, respond EXACTLY in this format:
SEARCH_RESEARCH: <search terms>
If it's about development status, respond EXACTLY in this format:
SEARCH_DEV: <search terms>
Otherwise, just answer directly.
"""
headers = {
"Accept": "application/json",
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 1024
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
print("Raw response:", response_text)
if "SEARCH_RESEARCH:" in response_text:
query = response_text.split("SEARCH_RESEARCH:")[1].strip()
results = research_retriever.invoke(query)
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
elif "SEARCH_DEV:" in response_text:
query = response_text.split("SEARCH_DEV:")[1].strip()
results = development_retriever.invoke(query)
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}')]}
else:
return {"messages": [AIMessage(content=response_text)]}
else:
raise Exception(f"API call failed: {response.text}")
# Grading function to decide next step
def simple_grade_documents(state: AgentState):
messages = state["messages"]
last_message = messages[-1]
print("Evaluating message:", last_message.content)
if "Results: [Document" in last_message.content:
print("---DOCS FOUND, GO TO GENERATE---")
return "generate"
else:
print("---NO DOCS FOUND, TRY REWRITE---")
return "rewrite"
# Generation function to synthesize a final answer
def generate(state: AgentState):
print("---GENERATE FINAL ANSWER---")
messages = state["messages"]
question = messages[0].content
last_message = messages[-1]
docs = ""
if "Results: [" in last_message.content:
results_start = last_message.content.find("Results: [")
docs = last_message.content[results_start:]
print("Documents found:", docs)
headers = {
"Accept": "application/json",
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
"Content-Type": "application/json"
}
prompt = f"""Based on these research documents, summarize the latest advancements in AI:
Question: {question}
Documents: {docs}
Focus on extracting and synthesizing the key findings from the research papers.
"""
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 1024
}
print("Sending generate request to API...")
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
print("Final Answer:", response_text)
return {"messages": [AIMessage(content=response_text)]}
else:
raise Exception(f"API call failed: {response.text}")
# Rewrite function to refine unclear questions
def rewrite(state: AgentState):
print("---REWRITE QUESTION---")
messages = state["messages"]
original_question = messages[0].content if len(messages) > 0 else "N/A"
headers = {
"Accept": "application/json",
"Authorization": f"Bearer sk-1cddf19f9dc4466fa3ecea6fe10abec0",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": f"Rewrite this question to be more specific and clearer: {original_question}"}],
"temperature": 0.7,
"max_tokens": 1024
}
print("Sending rewrite request...")
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
print("Status Code:", response.status_code)
print("Response:", response.text)
if response.status_code == 200:
response_text = response.json()['choices'][0]['message']['content']
print("Rewritten question:", response_text)
return {"messages": [AIMessage(content=response_text)]}
else:
raise Exception(f"API call failed: {response.text}")
# Custom condition to check if a tool action is called
tools_pattern = re.compile(r"Action: .*")
def custom_tools_condition(state: AgentState):
messages = state["messages"]
last_message = messages[-1]
content = last_message.content
print("Checking tools condition:", content)
if tools_pattern.match(content):
print("Moving to retrieve...")
return "tools"
print("Moving to END...")
return END
# Build the workflow using LangGraph's StateGraph
workflow = StateGraph(AgentState)
workflow.add_node("agent", agent)
retrieve_node = ToolNode(tools)
workflow.add_node("retrieve", retrieve_node)
workflow.add_node("rewrite", rewrite)
workflow.add_node("generate", generate)
workflow.add_edge(START, "agent")
workflow.add_conditional_edges("agent", custom_tools_condition, {"tools": "retrieve", END: END})
workflow.add_conditional_edges("retrieve", simple_grade_documents)
workflow.add_edge("generate", END)
workflow.add_edge("rewrite", "agent")
app = workflow.compile()
# Function to process a user question through the workflow
def process_question(user_question, app, config):
events = []
for event in app.stream({"messages": [("user", user_question)]}, config):
events.append(event)
return events
# Streamlit UI for interaction
def main():
st.set_page_config(
page_title="AI Research & Development Assistant",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.stApp { background-color: #f8f9fa; }
.stButton > button { width: 100%; margin-top: 20px; }
.data-box { padding: 20px; border-radius: 10px; margin: 10px 0; }
.research-box { background-color: #e3f2fd; border-left: 5px solid #1976d2; }
.dev-box { background-color: #e8f5e9; border-left: 5px solid #43a047; }
</style>
""", unsafe_allow_html=True)
with st.sidebar:
st.header("π Available Data")
st.subheader("Research Database")
for text in research_texts:
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
st.subheader("Development Database")
for text in development_texts:
st.markdown(f'<div class="data-box dev-box">{text}</div>', unsafe_allow_html=True)
st.title("π€ AI Research & Development Assistant")
st.markdown("---")
query = st.text_area("Enter your question:", height=100, placeholder="e.g., What is the latest advancement in AI research?")
col1, col2 = st.columns([1, 2])
with col1:
if st.button("π Get Answer", use_container_width=True):
if query:
with st.spinner('Processing your question...'):
events = process_question(query, app, {"configurable": {"thread_id": "1"}})
for event in events:
if 'agent' in event:
with st.expander("π Processing Step", expanded=True):
content = event['agent']['messages'][0].content
if "Results:" in content:
st.markdown("### π Retrieved Documents:")
docs_start = content.find("Results:")
docs = content[docs_start:]
st.info(docs)
elif 'generate' in event:
st.markdown("### β¨ Final Answer:")
st.success(event['generate']['messages'][0].content)
else:
st.warning("β οΈ Please enter a question first!")
with col2:
st.markdown("""
### π― How to Use
1. Type your question in the text box
2. Click "Get Answer" to process
3. View retrieved documents and final answer
### π‘ Example Questions
- What are the latest advancements in AI research?
- What is the status of Project A?
- What are the current trends in machine learning?
""")
if __name__ == "__main__":
main()
|