Spaces:
Sleeping
Sleeping
File size: 13,958 Bytes
b7719bf 1e0350f 09db53f b7719bf 09db53f 1e0350f b7719bf 1e0350f 85e6b5b b7719bf 1e0350f b7719bf 1e0350f b7719bf 1e0350f b7719bf 1e0350f b7719bf a1bb249 b7719bf 09db53f b7719bf 09db53f b7719bf 09db53f b7719bf 09db53f b7719bf 1e0350f b7719bf 1e0350f b7719bf 09db53f 1e0350f b7719bf 09db53f b7719bf 85e6b5b b7719bf 85e6b5b 1e0350f b7719bf 1e0350f b7719bf 1e0350f b7719bf 09db53f b7719bf 09db53f b7719bf 09db53f b7719bf 85e6b5b b7719bf 85e6b5b 1e0350f b7719bf 1e0350f b7719bf 1e0350f 09db53f b7719bf 09db53f 85e6b5b b7719bf 1e0350f b7719bf 1e0350f b7719bf 1e0350f b7719bf 1e0350f b7719bf 1e0350f 09db53f b7719bf 1e0350f b7719bf 1e0350f 09db53f b7719bf 09db53f b7719bf a1bb249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Advanced Multi‑Modal Agentic RAG Chatbot
# pip install -r requirements.txt
import streamlit as st
import requests
import json
import re
import os
from typing import Sequence
from typing_extensions import TypedDict, Annotated
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langgraph.graph import END, StateGraph, START
from langgraph.prebuilt import ToolNode
from langgraph.graph.message import add_messages
# -------------------------------------------------------------------
# DATA SETUP: Static (research) and Dynamic (live updates) Databases
# Static research data (e.g., academic papers, reports)
research_texts = [
"Research Report: New algorithm boosts image recognition to 99%.",
"Paper: Transformers have redefined natural language processing paradigms.",
"Deep dive: Quantum computing’s emerging role in machine learning."
]
# Dynamic development/live data (e.g., real-time project updates)
development_texts = [
"Live Update: Project X API integration at 75% completion.",
"Status: Project Y is undergoing stress testing for scalability.",
"Alert: Immediate patch required for Project Z deployment issues."
]
# Text splitting settings: adaptable for multi‑modal data (could extend to images)
splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
research_docs = splitter.create_documents(research_texts)
development_docs = splitter.create_documents(development_texts)
# Create vector stores using advanced embeddings
embeddings = OpenAIEmbeddings(
model="text-embedding-3-large"
)
research_vectorstore = Chroma.from_documents(
documents=research_docs,
embedding=embeddings,
collection_name="research_collection_adv"
)
development_vectorstore = Chroma.from_documents(
documents=development_docs,
embedding=embeddings,
collection_name="development_collection_adv"
)
research_retriever = research_vectorstore.as_retriever()
development_retriever = development_vectorstore.as_retriever()
# Create tool wrappers for the two databases
from langchain.tools.retriever import create_retriever_tool
research_tool = create_retriever_tool(
research_retriever,
"research_db_tool",
"Search and retrieve static academic research documents."
)
development_tool = create_retriever_tool(
development_retriever,
"development_db_tool",
"Retrieve dynamic, real‑time development updates."
)
tools = [research_tool, development_tool]
# -------------------------------------------------------------------
# AGENT DESIGN: Advanced Agent with Self‑Reflection & Multi‑Tool Coordination
class AdvancedAgentState(TypedDict):
messages: Annotated[Sequence[AIMessage | HumanMessage | ToolMessage], add_messages]
def advanced_agent(state: AdvancedAgentState):
"""
A smarter agent that:
• Receives a multi-modal query (text and potentially images)
• Self-reflects on the query to decide if a real-time lookup is needed
• Chooses the appropriate tool or even combines results if required.
"""
st.write(">> [Agent] Processing query...")
messages = state["messages"]
user_message = messages[0].content if not isinstance(messages[0], tuple) else messages[0][1]
# Step 1: Initial Analysis and Self-Reflection
analysis_prompt = f"""You are an advanced multi-modal reasoning engine.
User Query: "{user_message}"
Analyze the query and decide:
- If it is about static academic research, output EXACTLY: ACTION_RESEARCH: <query>.
- If it is about dynamic development or live updates, output EXACTLY: ACTION_LIVE: <query>.
- Otherwise, output a direct answer with self-reflection.
Also, add a brief self-reflection on your reasoning process.
"""
headers = {
"Accept": "application/json",
"Authorization": "Bearer sk-ADVANCEDKEY123", # Use your secure key here
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": analysis_prompt}],
"temperature": 0.6,
"max_tokens": 1024
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code != 200:
raise Exception(f"API call failed: {response.text}")
response_text = response.json()['choices'][0]['message']['content']
st.write(">> [Agent] Analysis:", response_text)
# Step 2: Interpret the result and call the appropriate tool(s)
if "ACTION_RESEARCH:" in response_text:
query = response_text.split("ACTION_RESEARCH:")[1].strip().split("\n")[0]
results = research_retriever.invoke(query)
return {"messages": [AIMessage(content=f'Action: research_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}\n\nReflection: {response_text}')]}
elif "ACTION_LIVE:" in response_text:
query = response_text.split("ACTION_LIVE:")[1].strip().split("\n")[0]
results = development_retriever.invoke(query)
return {"messages": [AIMessage(content=f'Action: development_db_tool\n{{"query": "{query}"}}\n\nResults: {str(results)}\n\nReflection: {response_text}')]}
else:
# Direct answer with self-reflection
return {"messages": [AIMessage(content=response_text)]}
# -------------------------------------------------------------------
# DECISION & GENERATION FUNCTIONS: Advanced Grading & Iterative Answering
def advanced_grade(state: AdvancedAgentState):
"""
Checks the last message for valid document retrieval or if further refinement is needed.
"""
messages = state["messages"]
last_message = messages[-1]
st.write(">> [Grade] Reviewing output:", last_message.content)
if "Results: [Document" in last_message.content:
st.write(">> [Grade] Documents found; proceed to generation.")
return "generate"
else:
st.write(">> [Grade] No sufficient documents; try rewriting the query.")
return "rewrite"
def advanced_generate(state: AdvancedAgentState):
"""
Generate a final answer by summarizing retrieved documents
while incorporating self-reflection from the agent.
"""
st.write(">> [Generate] Synthesizing final answer...")
messages = state["messages"]
original_question = messages[0].content
last_message = messages[-1]
# Extract retrieved documents if available
docs = ""
if "Results: [" in last_message.content:
docs = last_message.content[last_message.content.find("Results: ["):]
generate_prompt = f"""Using the following documents and the query below,
summarize a comprehensive answer.
Query: {original_question}
Documents: {docs}
Additionally, integrate the self-reflection notes from the agent to explain your reasoning.
Focus on clarity and depth.
"""
headers = {
"Accept": "application/json",
"Authorization": "Bearer sk-ADVANCEDKEY123",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": generate_prompt}],
"temperature": 0.65,
"max_tokens": 1024
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code != 200:
raise Exception(f"API call failed during generation: {response.text}")
final_text = response.json()['choices'][0]['message']['content']
st.write(">> [Generate] Final Answer generated.")
return {"messages": [AIMessage(content=final_text)]}
def advanced_rewrite(state: AdvancedAgentState):
"""
Rewrite the user query for clarity using a self-reflection process.
"""
st.write(">> [Rewrite] Improving query clarity...")
messages = state["messages"]
original_query = messages[0].content
headers = {
"Accept": "application/json",
"Authorization": "Bearer sk-ADVANCEDKEY123",
"Content-Type": "application/json"
}
data = {
"model": "deepseek-chat",
"messages": [{"role": "user", "content": f"Please rewrite this query for more specificity and clarity: {original_query}"}],
"temperature": 0.6,
"max_tokens": 1024
}
response = requests.post(
"https://api.deepseek.com/v1/chat/completions",
headers=headers,
json=data,
verify=False
)
if response.status_code != 200:
raise Exception(f"API call failed during rewrite: {response.text}")
rewritten_query = response.json()['choices'][0]['message']['content']
st.write(">> [Rewrite] Rewritten query:", rewritten_query)
return {"messages": [AIMessage(content=rewritten_query)]}
# -------------------------------------------------------------------
# Custom Tools Condition: Advanced Multi‑Tool Routing
advanced_tools_pattern = re.compile(r"Action: .*")
def advanced_tools_condition(state: AdvancedAgentState):
messages = state["messages"]
last_message = messages[-1]
content = last_message.content
st.write(">> [Condition] Checking for tool invocation:", content)
if advanced_tools_pattern.match(content):
st.write(">> [Condition] Routing to tools retrieval.")
return "tools"
st.write(">> [Condition] No tool call detected; ending workflow.")
return END
# -------------------------------------------------------------------
# BUILDING THE ADVANCED WORKFLOW WITH LANGGRAPH
advanced_workflow = StateGraph(AdvancedAgentState)
advanced_workflow.add_node("agent", advanced_agent)
advanced_tool_node = ToolNode(tools) # Re-use our existing tools
advanced_workflow.add_node("retrieve", advanced_tool_node)
advanced_workflow.add_node("rewrite", advanced_rewrite)
advanced_workflow.add_node("generate", advanced_generate)
advanced_workflow.add_edge(START, "agent")
advanced_workflow.add_conditional_edges(
"agent",
advanced_tools_condition,
{"tools": "retrieve", END: END}
)
advanced_workflow.add_conditional_edges("retrieve", advanced_grade)
advanced_workflow.add_edge("generate", END)
advanced_workflow.add_edge("rewrite", "agent")
advanced_app = advanced_workflow.compile()
def process_advanced_question(user_question, app, config):
"""Process user question through the advanced workflow."""
events = []
for event in app.stream({"messages": [("user", user_question)]}, config):
events.append(event)
return events
# -------------------------------------------------------------------
# STREAMLIT UI: Multi‑Modal Advanced Chatbot Interface
def main():
st.set_page_config(
page_title="Advanced Multi‑Modal AI Assistant",
layout="wide",
initial_sidebar_state="expanded"
)
st.markdown("""
<style>
.stApp { background-color: #f0f2f6; }
.stButton > button { width: 100%; margin-top: 20px; }
.data-box { padding: 15px; border-radius: 8px; margin: 8px 0; }
.research-box { background-color: #e1f5fe; border-left: 5px solid #0288d1; }
.live-box { background-color: #e8f5e9; border-left: 5px solid #2e7d32; }
</style>
""", unsafe_allow_html=True)
# Sidebar: Display static and live data
with st.sidebar:
st.header("📚 Data Sources")
st.subheader("Static Research")
for text in research_texts:
st.markdown(f'<div class="data-box research-box">{text}</div>', unsafe_allow_html=True)
st.subheader("Live Updates")
for text in development_texts:
st.markdown(f'<div class="data-box live-box">{text}</div>', unsafe_allow_html=True)
st.title("🤖 Advanced Multi‑Modal Agentic RAG Assistant")
st.markdown("---")
# Query Input (supports future multi‑modal extensions)
query = st.text_area("Enter your question (or upload an image in future versions):", height=100, placeholder="e.g., What recent breakthroughs in AI are influencing real‑time projects?")
col1, col2 = st.columns([1, 2])
with col1:
if st.button("🔍 Get Advanced Answer", use_container_width=True):
if query:
with st.spinner("Processing your advanced query..."):
events = process_advanced_question(query, advanced_app, {"configurable": {"thread_id": "advanced1"}})
for event in events:
if 'agent' in event:
with st.expander("🔄 Agent Analysis", expanded=True):
st.info(event['agent']['messages'][0].content)
elif 'generate' in event:
st.markdown("### ✨ Final Answer:")
st.success(event['generate']['messages'][0].content)
elif 'rewrite' in event:
st.warning("Query was unclear. Rewriting...")
st.info(event['rewrite']['messages'][0].content)
else:
st.warning("⚠️ Please enter a question!")
with col2:
st.markdown("""
### How It Works:
1. **Advanced Agent**: Uses self-reflection to decide between static or live data.
2. **Tool Coordination**: Routes queries to the appropriate retrieval tool.
3. **Self‑Reflection & Iteration**: If retrieval fails, the query is rewritten for clarity.
4. **Final Synthesis**: Retrieved documents are summarized into a final, clear answer.
### Example Queries:
- "What new breakthroughs in quantum machine learning are there?"
- "Provide live updates on the progress of Project X."
- "Summarize the recent advancements in transformer models."
""")
if __name__ == "__main__":
main()
|