File size: 17,322 Bytes
c08faed
 
 
 
b5fce9d
 
 
 
 
486ca98
5bd4d74
486ca98
c08faed
51fb89c
b5fce9d
486ca98
06fc0da
486ca98
 
51fb89c
 
486ca98
 
 
 
 
 
06fc0da
b5fce9d
486ca98
 
b5fce9d
486ca98
9940006
b5fce9d
9940006
5effbd3
9940006
5effbd3
486ca98
06fc0da
 
9940006
 
486ca98
5effbd3
 
9940006
486ca98
9940006
 
 
06fc0da
486ca98
06fc0da
 
 
 
 
 
 
486ca98
 
 
5effbd3
9940006
486ca98
06fc0da
 
9940006
486ca98
 
9940006
 
 
 
 
 
06fc0da
9940006
 
06fc0da
9940006
 
 
 
 
5effbd3
06fc0da
9940006
5effbd3
 
1956035
9940006
06fc0da
 
5effbd3
5bd4d74
9940006
 
06fc0da
 
9940006
5effbd3
9940006
06fc0da
 
 
9940006
 
 
 
b5fce9d
06fc0da
1956035
5effbd3
06fc0da
 
486ca98
 
9940006
1956035
486ca98
 
 
 
 
 
5effbd3
486ca98
 
 
9940006
272b87c
486ca98
 
 
06fc0da
 
 
 
 
 
 
 
 
486ca98
 
 
06fc0da
486ca98
 
 
 
06fc0da
 
 
 
 
 
 
 
 
 
 
486ca98
06fc0da
 
b5fce9d
486ca98
5effbd3
486ca98
06fc0da
 
 
486ca98
06fc0da
486ca98
 
 
 
5effbd3
486ca98
9940006
5effbd3
486ca98
9940006
1956035
486ca98
f72077b
06fc0da
486ca98
06fc0da
 
 
5effbd3
 
9940006
486ca98
 
 
 
 
9940006
 
486ca98
 
 
 
 
 
9940006
 
486ca98
9940006
486ca98
 
 
 
 
 
 
9940006
f7b84f1
c08faed
486ca98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import io
import json
import warnings
import google.generativeai as genai
import os
from typing import List, Dict, Any, Tuple, Optional

# --- Configuration & Constants ---
warnings.filterwarnings('ignore')

CSS = """
/* --- Phoenix UI Professional Dark CSS --- */
#app-title { text-align: center; font-weight: 800; font-size: 2.5rem; color: #f9fafb; }
.stat-card { border-radius: 12px !important; padding: 20px !important; background: #1f2937 !important; border: 1px solid #374151 !important; text-align: center; transition: all 0.3s ease; }
.stat-card:hover { transform: translateY(-5px); box-shadow: 0 10px 15px -3px rgba(0,0,0,0.1), 0 4px 6px -2px rgba(0,0,0,0.05); }
.stat-card-title { font-size: 16px; font-weight: 500; color: #9ca3af !important; margin-bottom: 8px; }
.stat-card-value { font-size: 32px; font-weight: 700; color: #f9fafb !important; }
.sidebar { background-color: #111827 !important; padding: 15px; border-right: 1px solid #374151 !important; min-height: 100vh; }
.sidebar .gr-button { width: 100%; text-align: left !important; background: none !important; border: none !important; box-shadow: none !important; color: #d1d5db !important; font-size: 16px !important; padding: 12px 10px !important; margin-bottom: 8px !important; border-radius: 8px !important; transition: background-color 0.2s ease; }
.sidebar .gr-button:hover { background-color: #374151 !important; }
.sidebar .gr-button.selected { background-color: #4f46e5 !important; font-weight: 600 !important; color: white !important; }
.explanation-block { background-color: #1e3a8a !important; border-left: 4px solid #3b82f6 !important; padding: 12px; color: #e5e7eb !important; border-radius: 4px; }
"""
MAX_DASHBOARD_PLOTS = 10

class DataExplorerApp:
    """A professional-grade, AI-powered data exploration application."""

    def __init__(self):
        self.demo = self._build_ui()

    def _build_ui(self) -> gr.Blocks:
        with gr.Blocks(theme=gr.themes.Glass(primary_hue="indigo", secondary_hue="blue"), css=CSS, title="AI Data Explorer Pro") as demo:
            state_var = gr.State({})
            
            # --- Component Definition ---
            cockpit_btn, deep_dive_btn, copilot_btn = [gr.Button(elem_id=id) for id in ["cockpit", "deep_dive", "co-pilot"]]
            file_input, status_output = gr.File(label="πŸ“ Upload CSV File", file_types=[".csv"]), gr.Markdown("Status: Awaiting data...")
            api_key_input = gr.Textbox(label="πŸ”‘ Gemini API Key", type="password", placeholder="Enter key to enable AI...")
            suggestion_btn = gr.Button("Get Smart Suggestions", variant="secondary", interactive=False)
            
            rows_stat, cols_stat = gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False), gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False)
            quality_stat, time_cols_stat = gr.Textbox("0%", interactive=False, elem_classes="stat-card-value", show_label=False), gr.Textbox("0", interactive=False, elem_classes="stat-card-value", show_label=False)
            suggestion_buttons = [gr.Button(visible=False) for _ in range(5)]
            
            plot_type_dd = gr.Dropdown(['histogram', 'bar', 'scatter', 'box'], label="Plot Type", value='histogram')
            x_col_dd = gr.Dropdown([], label="X-Axis / Column", interactive=False)
            y_col_dd = gr.Dropdown([], label="Y-Axis (for Scatter/Box)", visible=False, interactive=False)
            add_plot_btn, clear_plots_btn = gr.Button("Add to Dashboard", variant="primary", interactive=False), gr.Button("Clear Dashboard")
            
            # CORRECTED: Use a dynamic set of Plot components, not Gallery
            dashboard_plots = [gr.Plot(visible=False) for _ in range(MAX_DASHBOARD_PLOTS)]

            chatbot, chat_input, chat_submit_btn = gr.Chatbot(height=500, label="Conversation", show_copy_button=True), gr.Textbox(label="Your Question", placeholder="e.g., 'What is the relationship between age and salary?'", scale=4), gr.Button("Ask AI", variant="primary")
            copilot_explanation, copilot_code = gr.Markdown(visible=False, elem_classes="explanation-block"), gr.Code(language="python", visible=False, label="Executed Code")
            copilot_plot, copilot_table = gr.Plot(visible=False, label="Generated Visualization"), gr.Dataframe(visible=False, label="Generated Table", wrap=True)

            # --- Layout Arrangement ---
            with gr.Row():
                with gr.Column(scale=1, elem_classes="sidebar"):
                    gr.Markdown("## πŸš€ AI Explorer Pro", elem_id="app-title"); cockpit_btn; deep_dive_btn; copilot_btn; gr.Markdown("---")
                    file_input; status_output; gr.Markdown("---"); api_key_input; suggestion_btn
                with gr.Column(scale=4):
                    welcome_page, cockpit_page, deep_dive_page, copilot_page = [gr.Column(visible=i==0) for i in range(4)]
                    with welcome_page: gr.Markdown("# Welcome to the AI Data Explorer Pro\n> Please **upload a CSV file** and **enter your Gemini API key** to begin.")
                    with cockpit_page:
                        gr.Markdown("## πŸ“Š Data Cockpit: At-a-Glance Overview")
                        with gr.Row():
                            with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Rows</div>"); rows_stat
                            with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Columns</div>"); cols_stat
                            with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Data Quality</div>"); quality_stat
                            with gr.Column(elem_classes="stat-card"): gr.Markdown("<div class='stat-card-title'>Date/Time Cols</div>"); time_cols_stat
                        with gr.Accordion(label="✨ AI Smart Suggestions", open=True): [btn for btn in suggestion_buttons]
                    with deep_dive_page:
                        gr.Markdown("## πŸ” Deep Dive: Manual Dashboard Builder"); gr.Markdown("Construct visualizations to investigate specific relationships.")
                        with gr.Row(): plot_type_dd; x_col_dd; y_col_dd
                        with gr.Row(): add_plot_btn; clear_plots_btn
                        with gr.Column(): [plot for plot in dashboard_plots] # Place the plot holders
                    with copilot_page:
                        gr.Markdown("## πŸ€– Chief Data Scientist: Your AI Partner"); chatbot
                        with gr.Accordion("AI's Detailed Response", open=True): copilot_explanation; copilot_code; copilot_plot; copilot_table
                        with gr.Row(): chat_input; chat_submit_btn
            
            # --- Event Handlers Registration ---
            pages, nav_buttons = [welcome_page, cockpit_page, deep_dive_page, copilot_page], [cockpit_btn, deep_dive_btn, copilot_btn]
            for i, btn in enumerate(nav_buttons):
                btn.click(lambda id=btn.elem_id: self._switch_page(id, pages), outputs=pages).then(
                    lambda i=i: [gr.update(elem_classes="selected" if j==i else "") for j in range(len(nav_buttons))], outputs=nav_buttons)

            file_input.upload(self.load_and_process_file, inputs=[file_input], outputs=[
                state_var, status_output, welcome_page, cockpit_page, rows_stat, cols_stat, quality_stat, time_cols_stat,
                x_col_dd, y_col_dd, add_plot_btn]).then(lambda: self._switch_page("cockpit", pages), outputs=pages).then(
                lambda: [gr.update(elem_classes="selected"), gr.update(elem_classes=""), gr.update(elem_classes="")], outputs=nav_buttons)

            api_key_input.change(lambda x: gr.update(interactive=bool(x)), inputs=[api_key_input], outputs=[suggestion_btn])
            plot_type_dd.change(self._update_plot_controls, inputs=[plot_type_dd], outputs=[y_col_dd])
            add_plot_btn.click(self.add_plot_to_dashboard, inputs=[state_var, x_col_dd, y_col_dd, plot_type_dd], outputs=[state_var, *dashboard_plots])
            clear_plots_btn.click(self.clear_dashboard, inputs=[state_var], outputs=[state_var, *dashboard_plots])
            suggestion_btn.click(self.get_ai_suggestions, inputs=[state_var, api_key_input], outputs=suggestion_buttons)
            
            for btn in suggestion_buttons:
                btn.click(self.handle_suggestion_click, inputs=[btn], outputs=[*pages, chat_input]).then(
                    lambda: self._switch_page("co-pilot", pages), outputs=pages).then(
                    lambda: (gr.update(elem_classes=""), gr.update(elem_classes=""), gr.update(elem_classes="selected")), outputs=nav_buttons)
            
            chat_submit_btn.click(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
            chat_input.submit(self.respond_to_chat, [state_var, api_key_input, chat_input, chatbot], [chatbot, copilot_explanation, copilot_code, copilot_plot, copilot_table]).then(lambda: "", outputs=[chat_input])
        return demo

    def launch(self): self.demo.launch(debug=True)

    def _switch_page(self, page_id: str, all_pages: List) -> List[gr.update]:
        visibility = {"welcome":0, "cockpit":1, "deep_dive":2, "co-pilot":3}
        return [gr.update(visible=i == visibility.get(page_id, 0)) for i in range(len(all_pages))]
    
    def _update_plot_controls(self, plot_type: str) -> gr.update:
        return gr.update(visible=plot_type in ['scatter', 'box'])

    def load_and_process_file(self, file_obj: Any) -> Tuple[Any, ...]:
        try:
            df = pd.read_csv(file_obj.name, low_memory=False)
            metadata = self._extract_dataset_metadata(df)
            state = {'df': df, 'metadata': metadata, 'dashboard_plots': []}
            rows, cols, quality = metadata['shape'][0], metadata['shape'][1], metadata['data_quality']
            return (state, f"βœ… **{os.path.basename(file_obj.name)}** loaded.", gr.update(visible=False), gr.update(visible=True),
                    f"{rows:,}", f"{cols}", f"{quality}%", f"{len(metadata['datetime_cols'])}",
                    gr.update(choices=metadata['columns'], interactive=True), gr.update(choices=metadata['columns'], interactive=True), gr.update(interactive=True))
        except Exception as e:
            gr.Error(f"File Load Error: {e}"); return {}, f"❌ Error: {e}", gr.update(visible=True), gr.update(visible=False), "0", "0", "0%", "0", gr.update(choices=[], interactive=False), gr.update(choices=[], interactive=False), gr.update(interactive=False)

    def _extract_dataset_metadata(self, df: pd.DataFrame) -> Dict[str, Any]:
        rows, cols = df.shape
        quality = round((df.notna().sum().sum() / (rows * cols)) * 100, 1) if rows * cols > 0 else 0
        return {'shape': (rows, cols), 'columns': df.columns.tolist(), 'numeric_cols': df.select_dtypes(include=np.number).columns.tolist(),
                'categorical_cols': df.select_dtypes(include=['object', 'category']).columns.tolist(), 'datetime_cols': df.select_dtypes(include=['datetime64', 'datetime64[ns]']).columns.tolist(),
                'dtypes_head': df.head(3).to_string(), 'data_quality': quality}

    def add_plot_to_dashboard(self, state: Dict, x_col: str, y_col: Optional[str], plot_type: str) -> List[Any]:
        if len(state.get('dashboard_plots', [])) >= MAX_DASHBOARD_PLOTS:
            gr.Warning(f"Dashboard is full. Max {MAX_DASHBOARD_PLOTS} plots allowed."); return [state, *self._get_plot_updates(state)]
        if not x_col: gr.Warning("Please select at least an X-axis column."); return [state, *self._get_plot_updates(state)]
        df, title = state['df'], f"{plot_type.capitalize()}: {y_col} by {x_col}" if y_col and plot_type in ['box', 'scatter'] else f"Distribution of {x_col}"
        try:
            if plot_type == 'histogram': fig = px.histogram(df, x=x_col, title=title)
            elif plot_type == 'box': fig = px.box(df, x=x_col, y=y_col, title=title)
            elif plot_type == 'scatter': fig = px.scatter(df, x=x_col, y=y_col, title=title, trendline="ols")
            elif plot_type == 'bar':
                counts = df[x_col].value_counts().nlargest(20)
                fig = px.bar(counts, x=counts.index, y=counts.values, title=f"Top 20 Categories for {x_col}", labels={'index': x_col, 'y': 'Count'})
            if fig:
                fig.update_layout(template="plotly_dark"); state['dashboard_plots'].append(fig); gr.Info(f"Added '{title}' to dashboard.")
            return [state, *self._get_plot_updates(state)]
        except Exception as e: gr.Error(f"Plotting Error: {e}"); return [state, *self._get_plot_updates(state)]
    
    def _get_plot_updates(self, state: Dict) -> List[gr.update]:
        plots = state.get('dashboard_plots', [])
        updates = []
        for i in range(MAX_DASHBOARD_PLOTS):
            if i < len(plots): updates.append(gr.update(value=plots[i], visible=True))
            else: updates.append(gr.update(value=None, visible=False))
        return updates

    def clear_dashboard(self, state: Dict) -> List[Any]:
        state['dashboard_plots'] = []; gr.Info("Dashboard cleared."); return [state, *self._get_plot_updates(state)]

    def get_ai_suggestions(self, state: Dict, api_key: str) -> List[gr.update]:
        if not api_key: gr.Warning("API Key is required."); return [gr.update(visible=False)]*5
        if not state: gr.Warning("Please load data first."); return [gr.update(visible=False)]*5
        # CORRECTED: metadata assignment
        metadata = state['metadata']
        prompt = f"From columns {metadata['columns']}, generate 4 impactful analytical questions. Return ONLY a JSON list of strings."
        try:
            genai.configure(api_key=api_key); suggestions = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text)
            return [gr.Button(s, visible=True) for s in suggestions] + [gr.Button(visible=False)] * (5 - len(suggestions))
        except Exception as e: gr.Error(f"AI Suggestion Error: {e}"); return [gr.update(visible=False)]*5

    def handle_suggestion_click(self, question: str) -> Tuple[gr.update, ...]:
        return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), question

    def respond_to_chat(self, state: Dict, api_key: str, user_message: str, history: List) -> Any:
        if not user_message.strip(): gr.Warning("Message is empty."); return history, *[gr.update()]*4
        if not api_key or not state:
            msg = "I need a Gemini API key and a dataset to work."; history.append((user_message, msg)); return history, *[gr.update(visible=False)]*4
        
        history.append((user_message, "Thinking... πŸ€”")); yield history, *[gr.update(visible=False)]*4
        
        metadata, prompt = state['metadata'], f"""You are 'Chief Data Scientist', an expert AI analyst...
        **Instructions:**
        1. **Analyze:** Understand user intent. Infer best plot type.
        2. **Plan:** Briefly explain your plan.
        3. **Code:** Write Python code. Use `fig` for plots (`template='plotly_dark'`) and `result_df` for tables.
        4. **Insight:** Provide a one-sentence business insight.
        5. **Respond ONLY with a single JSON object with keys: "plan", "code", "insight".**
        **Metadata:** {metadata['dtypes_head']}
        **User Question:** "{user_message}"
        """
        try:
            genai.configure(api_key=api_key)
            response_json = json.loads(genai.GenerativeModel('gemini-1.5-flash').generate_content(prompt).text.strip().replace("```json", "").replace("```", ""))
            plan, code, insight = response_json.get("plan"), response_json.get("code"), response_json.get("insight")
            stdout, fig, df_result, error = self._safe_exec(code, {'df': state['df'], 'px': px, 'pd': pd})
            
            history[-1] = (user_message, f"**Plan:** {plan}")
            explanation = f"**Insight:** {insight}"
            if stdout: explanation += f"\n\n**Console Output:**\n```\n{stdout}\n```"
            if error: gr.Error(f"AI Code Execution Failed: {error}")
            
            yield (history, gr.update(visible=bool(explanation), value=explanation), gr.update(visible=bool(code), value=code),
                   gr.update(visible=bool(fig), value=fig), gr.update(visible=bool(df_result is not None), value=df_result))
        except Exception as e:
            history[-1] = (user_message, f"I encountered an error. Please rephrase your question. (Error: {e})")
            yield history, *[gr.update(visible=False)]*4
            
    def _safe_exec(self, code_string: str, local_vars: Dict) -> Tuple[Any, ...]:
        output_buffer = io.StringIO()
        try:
            with redirect_stdout(output_buffer): exec(code_string, globals(), local_vars)
            return output_buffer.getvalue(), local_vars.get('fig'), local_vars.get('result_df'), None
        except Exception as e: return None, None, None, str(e)

if __name__ == "__main__":
    app = DataExplorerApp()
    app.launch()