File size: 23,054 Bytes
60da408 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 60da408 1b21942 c9ba3ae c08faed c9ba3ae c08faed 60da408 b5fce9d 60da408 c9ba3ae 5bd4d74 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 b5fce9d 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 00588a3 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 1b21942 60da408 c9ba3ae 1b21942 c9ba3ae 60da408 486ca98 60da408 c9ba3ae 60da408 486ca98 c9ba3ae 60da408 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 c9ba3ae 1b21942 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 60da408 c9ba3ae 1b21942 60da408 1b21942 c9ba3ae 1b21942 c9ba3ae 60da408 c9ba3ae 60da408 1b21942 c9ba3ae 60da408 c9ba3ae 60da408 1b21942 60da408 1b21942 c9ba3ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# -*- coding: utf-8 -*-
#
# PROJECT: CognitiveEDA - The AI-Augmented Data Discovery Platform
#
# DESCRIPTION: An enterprise-grade Gradio application that revolutionizes Exploratory
# Data Analysis (EDA). By integrating Google's Gemini Pro LLM, this
# tool transcends traditional data profiling to deliver a rich,
# narrative-driven analysis, actionable insights, and strategic
# recommendations in a single, streamlined workflow.
#
# SETUP: This application has external dependencies. Before running, install
# all required packages using the requirements.txt file:
# $ pip install -r requirements.txt
#
# ARCHITECTURE: The application is built upon a robust, object-oriented foundation.
# - DataAnalyzer (Core Engine): An encapsulated class that holds the
# DataFrame state and performs all statistical calculations and
# metadata extraction efficiently, ensuring data is processed once.
# - AI Integration: A dedicated module communicates with the Gemini API,
# using a sophisticated, structured prompt to ensure consistent,
# high-quality analytical narratives.
# - Gradio Interface (UI Layer): A multi-tabbed, interactive dashboard
# that logically separates the AI narrative, data profiling, static
# visuals, and interactive exploration tools.
#
# AUTHOR: An MCP Expert in Data & AI Solutions
# VERSION: 3.1 (Enterprise Edition)
# LAST-UPDATE: 2023-10-28 (Added dependency check & requirements file)
from __future__ import annotations
import warnings
import logging
import os
import sys
import importlib.util
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import google.generativeai as genai
# --- Configuration & Constants ---
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - [%(levelname)s] - (%(filename)s:%(lineno)d) - %(message)s'
)
warnings.filterwarnings('ignore', category=FutureWarning)
class Config:
"""Application-wide configuration settings."""
APP_TITLE = "π CognitiveEDA: AI-Augmented Data Discovery Platform"
GEMINI_MODEL = 'gemini-1.5-flash-latest'
CORR_THRESHOLD = 0.75 # Threshold for highlighting high correlation
TOP_N_CATEGORIES = 10 # For bar charts of categorical features
# --- Core Analysis Engine ---
class DataAnalyzer:
"""
Encapsulates all data analysis logic, acting as the single source of truth
for the uploaded dataset and its derived metadata.
"""
def __init__(self, df: pd.DataFrame):
if not isinstance(df, pd.DataFrame):
raise TypeError("Input must be a pandas DataFrame.")
self.df = df
self._metadata: Optional[Dict[str, Any]] = None
logging.info(f"DataAnalyzer instantiated with DataFrame of shape: {self.df.shape}")
@property
def metadata(self) -> Dict[str, Any]:
"""Lazy-loads and caches comprehensive dataset metadata for efficient reuse."""
if self._metadata is None:
logging.info("First access to metadata, performing extraction...")
self._metadata = self._extract_metadata()
return self._metadata
def _extract_metadata(self) -> Dict[str, Any]:
"""Performs a deep scan of the DataFrame to extract key characteristics."""
rows, cols = self.df.shape
numeric_cols = self.df.select_dtypes(include=np.number).columns.tolist()
categorical_cols = self.df.select_dtypes(include=['object', 'category']).columns.tolist()
high_corr_pairs = []
if len(numeric_cols) > 1:
corr_matrix = self.df[numeric_cols].corr().abs()
upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))
high_corr_series = upper_tri.stack()
high_corr_pairs = (
high_corr_series[high_corr_series > Config.CORR_THRESHOLD]
.reset_index()
.rename(columns={'level_0': 'Feature 1', 'level_1': 'Feature 2', 0: 'Correlation'})
.to_dict('records')
)
return {
'shape': (rows, cols),
'columns': self.df.columns.tolist(),
'numeric_cols': numeric_cols,
'categorical_cols': categorical_cols,
'memory_usage_mb': f"{self.df.memory_usage(deep=True).sum() / 1e6:.2f}",
'total_missing': int(self.df.isnull().sum().sum()),
'data_quality_score': round((self.df.notna().sum().sum() / self.df.size) * 100, 2),
'high_corr_pairs': high_corr_pairs,
}
def get_profiling_tables(self) -> Tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""Generates structured DataFrames for data profiling."""
logging.info("Generating profiling tables for missing, numeric, and categorical data.")
missing = self.df.isnull().sum()
missing_df = pd.DataFrame({
'Missing Count': missing,
'Missing Percentage (%)': (missing / len(self.df) * 100).round(2)
}).reset_index().rename(columns={'index': 'Column'}).sort_values('Missing Count', ascending=False)
numeric_stats = self.df[self.metadata['numeric_cols']].describe(percentiles=[.01, .25, .5, .75, .99]).T
numeric_stats_df = numeric_stats.round(3).reset_index().rename(columns={'index': 'Column'})
cat_stats = self.df[self.metadata['categorical_cols']].describe(include=['object', 'category']).T
cat_stats_df = cat_stats.reset_index().rename(columns={'index': 'Column'})
return missing_df, numeric_stats_df, cat_stats_df
def get_overview_visuals(self) -> Tuple[go.Figure, go.Figure, go.Figure]:
"""Creates a set of key visualizations for a high-level overview."""
logging.info("Generating overview visualizations (types, missing data, correlation).")
meta = self.metadata
dtype_counts = self.df.dtypes.astype(str).value_counts()
fig_types = px.pie(
values=dtype_counts.values, names=dtype_counts.index,
title="<b>π Data Type Composition</b>", hole=0.4,
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig_types.update_traces(textposition='outside', textinfo='percent+label')
missing_df = self.df.isnull().sum().reset_index(name='count').query('count > 0')
fig_missing = px.bar(
missing_df, x='index', y='count', title="<b>π³οΈ Missing Values Distribution</b>",
labels={'index': 'Column Name', 'count': 'Number of Missing Values'},
).update_xaxes(categoryorder="total descending")
fig_corr = go.Figure()
if len(meta['numeric_cols']) > 1:
corr_matrix = self.df[meta['numeric_cols']].corr()
fig_corr = px.imshow(
corr_matrix, text_auto=".2f", aspect="auto",
title=f"<b>π Correlation Matrix (Threshold > {Config.CORR_THRESHOLD})</b>",
color_continuous_scale='RdBu_r', zmin=-1, zmax=1
)
else:
fig_corr.update_layout(title="<b>π Correlation Matrix (Insufficient Numeric Data)</b>")
return fig_types, fig_missing, fig_corr
def generate_ai_narrative(self, api_key: str) -> str:
"""Orchestrates the generation of the full AI-driven report using Gemini."""
logging.info("Generating AI narrative with the Gemini API.")
meta = self.metadata
# NOTE: The .to_markdown() method requires the 'tabulate' library.
# This is handled by the pre-flight check in if __name__ == "__main__":
data_snippet_md = self.df.head(5).to_markdown(index=False)
prompt = f"""
As "Cognitive Analyst," an elite AI data scientist, your task is to generate a comprehensive, multi-part data discovery report.
Analyze the following dataset context and produce a professional, insightful, and clear analysis in Markdown format.
**DATASET CONTEXT:**
- **Shape:** {meta['shape'][0]} rows, {meta['shape'][1]} columns.
- **Column Schema:**
- Numeric: {', '.join(meta['numeric_cols']) if meta['numeric_cols'] else 'None'}
- Categorical: {', '.join(meta['categorical_cols']) if meta['categorical_cols'] else 'None'}
- **Data Quality Score:** {meta['data_quality_score']}% (Percentage of non-missing cells)
- **Total Missing Values:** {meta['total_missing']:,}
- **High-Correlation Pairs (>{Config.CORR_THRESHOLD}):** {meta['high_corr_pairs'] if meta['high_corr_pairs'] else 'None detected.'}
- **Data Snippet (First 5 Rows):**
{data_snippet_md}
**REQUIRED REPORT STRUCTURE (Strictly use this Markdown format):**
# π AI Data Discovery Report
## π 1. Executive Summary
* **Primary Objective:** (Deduce the most likely purpose of this dataset. What problem is it trying to solve?)
* **Key Finding:** (State the single most interesting or impactful insight you've discovered.)
* **Overall State:** (Briefly comment on the data's quality and readiness for analysis.)
## π§ 2. Data Profile & Quality Assessment
* **First Impression:** (Describe the dataset's structure, size, and composition.)
* **Data Quality Audit:** (Elaborate on the **{meta['data_quality_score']}%** quality score. Are the **{meta['total_missing']}** missing values concentrated in specific columns? Is this a major concern?)
* **Redundancy Check:** (Comment on the detected high-correlation pairs. Is there a risk of multicollinearity in modeling?)
## π‘ 3. Key Insights & Potential Stories
* **Insight 1 (e.g., Anomaly Detected π΅οΈ):** (Describe a surprising pattern, outlier, or distribution in a key numeric column.)
* **Insight 2 (e.g., Categorical Trend π):** (Analyze a key categorical column. What does its distribution reveal? Is there a dominant category?)
* **Insight 3 (e.g., Relationship Hint π):** (Speculate on a potential relationship between two or more columns, even if not highly correlated.)
## π οΈ 4. Actionable Recommendations
* **Data Cleaning:**
- **Step 1:** (Provide a specific recommendation for handling missing data, e.g., "For `column_name`, with X% missing, consider imputation using the median due to its skewed distribution.")
- **Step 2:** (Suggest actions for correlated features, e.g., "Consider dropping `Feature A` or using dimensionality reduction (PCA) due to its high correlation with `Feature B`.")
* **Feature Engineering:**
- **Idea 1:** (Suggest creating a new feature, e.g., "Combine `year` and `month` into a `date` feature for time-series analysis.")
* **Next Analytical Steps:**
- **Hypothesis to Test:** (Propose a business or research question to investigate further, e.g., "Does `customer_segment` significantly impact `total_spend`?")
- **Modeling Potential:** (Suggest a suitable machine learning model, e.g., "This dataset is well-suited for a classification model to predict `is_churn`.")
"""
try:
genai.configure(api_key=api_key)
model = genai.GenerativeModel(Config.GEMINI_MODEL)
response = model.generate_content(prompt)
return response.text
except Exception as e:
logging.error(f"Gemini API call failed: {e}", exc_info=True)
error_message = (
"β **AI Report Generation Failed**\n\n"
f"**Error Details:** `{str(e)}`\n\n"
"**Troubleshooting Steps:**\n"
"1. Verify that your Google Gemini API key is correct and active.\n"
"2. Check your network connection and firewall settings.\n"
"3. Ensure the Gemini API is not experiencing an outage."
)
return error_message
# --- Gradio UI & Event Handlers ---
def create_ui():
"""Defines and builds the Gradio user interface."""
def create_histogram(analyzer: DataAnalyzer, col: str) -> go.Figure:
if not col or not analyzer: return go.Figure()
return px.histogram(analyzer.df, x=col, title=f"<b>Distribution of {col}</b>", marginal="box", template="plotly_white")
def create_scatterplot(analyzer: DataAnalyzer, x_col: str, y_col:str, color_col:str) -> go.Figure:
if not all([analyzer, x_col, y_col]): return go.Figure()
return px.scatter(
analyzer.df, x=x_col, y=y_col, color=color_col,
title=f"<b>Scatter Plot: {x_col} vs. {y_col}</b>", template="plotly_white",
color_continuous_scale=px.colors.sequential.Viridis
)
def analyze_single_column(analyzer: DataAnalyzer, col: str) -> Tuple[str, go.Figure]:
if not col or not analyzer: return "", go.Figure()
series = analyzer.df[col]
stats_md = f"### π **Deep Dive: `{col}`**\n"
stats_md += f"- **Data Type:** `{series.dtype}`\n"
stats_md += f"- **Unique Values:** `{series.nunique()}`\n"
stats_md += f"- **Missing:** `{series.isnull().sum()}` ({series.isnull().mean():.2%})\n"
fig = go.Figure()
if pd.api.types.is_numeric_dtype(series):
stats_md += f"- **Mean:** `{series.mean():.3f}` | **Std Dev:** `{series.std():.3f}`\n"
stats_md += f"- **Median:** `{series.median():.3f}` | **Min:** `{series.min():.3f}` | **Max:** `{series.max():.3f}`\n"
fig = create_histogram(analyzer, col)
else:
top_n = series.value_counts().nlargest(Config.TOP_N_CATEGORIES)
stats_md += f"- **Top Value:** `{top_n.index[0]}` ({top_n.iloc[0]} occurrences)\n"
fig = px.bar(
top_n, y=top_n.index, x=top_n.values, orientation='h',
title=f"<b>Top {Config.TOP_N_CATEGORIES} Categories in `{col}`</b>",
labels={'y': col, 'x': 'Count'}, template="plotly_white"
).update_yaxes(categoryorder="total ascending")
return stats_md, fig
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="cyan"), title=Config.APP_TITLE) as demo:
state_analyzer = gr.State()
gr.Markdown(f"<h1>{Config.APP_TITLE}</h1>")
gr.Markdown("Upload a CSV file, provide your Gemini API key, and receive an instant, AI-driven analysis of your data.")
with gr.Row():
with gr.Column(scale=3):
upload_button = gr.File(label="1. Upload CSV File", file_types=[".csv"])
with gr.Column(scale=2):
api_key_input = gr.Textbox(label="2. Enter Google Gemini API Key", type="password")
with gr.Column(scale=1, min_width=150):
analyze_button = gr.Button("β¨ Generate Analysis", variant="primary")
with gr.Tabs():
with gr.Tab("π€ AI Narrative"):
ai_report_output = gr.Markdown("Your AI-generated report will appear here once analysis is complete...")
download_report_button = gr.Button("β¬οΈ Download Full Report", visible=False)
with gr.Tab("Profile"):
gr.Markdown("### **Detailed Data Profile**")
profile_missing_df = gr.DataFrame(interactive=False, label="Missing Values")
profile_numeric_df = gr.DataFrame(interactive=False, label="Numeric Stats")
profile_categorical_df = gr.DataFrame(interactive=False, label="Categorical Stats")
with gr.Tab("π Overview Visuals"):
gr.Markdown("### **At-a-Glance Visualizations**")
with gr.Row():
plot_types = gr.Plot()
plot_missing = gr.Plot()
plot_correlation = gr.Plot()
with gr.Tab("π¨ Interactive Explorer"):
gr.Markdown("### **Visually Explore Feature Relationships**")
with gr.Row(equal_height=False):
with gr.Column(scale=1):
gr.Markdown("#### Univariate Analysis")
dd_hist_col = gr.Dropdown(label="Select Column for Histogram", visible=False)
with gr.Column(scale=2):
plot_histogram = gr.Plot()
with gr.Row(equal_height=False):
with gr.Column(scale=1):
gr.Markdown("#### Bivariate Analysis (Scatter Plot)")
dd_scatter_x = gr.Dropdown(label="X-Axis (Numeric)", visible=False)
dd_scatter_y = gr.Dropdown(label="Y-Axis (Numeric)", visible=False)
dd_scatter_color = gr.Dropdown(label="Color By (Optional)", visible=False)
with gr.Column(scale=2):
plot_scatter = gr.Plot()
with gr.Tab("π Column Deep-Dive"):
gr.Markdown("### **Inspect a Single Column in Detail**")
dd_drilldown_col = gr.Dropdown(label="Select Column to Analyze", visible=False)
with gr.Row():
md_drilldown_stats = gr.Markdown()
plot_drilldown = gr.Plot()
gr.HTML("""
<div style="text-align: center; margin-top: 20px; font-family: sans-serif; color: #777;">
<p>π‘ Need an API key? Get one from <a href="https://aistudio.google.com/app/apikey" target="_blank">Google AI Studio</a>.</p>
<p>CognitiveEDA v3.1 | An MCP Expert System</p>
</div>
""")
outputs_for_main_analysis = [
state_analyzer, ai_report_output, download_report_button,
profile_missing_df, profile_numeric_df, profile_categorical_df,
plot_types, plot_missing, plot_correlation,
dd_hist_col, dd_scatter_x, dd_scatter_y, dd_scatter_color, dd_drilldown_col
]
analyze_button.click(fn=run_full_analysis, inputs=[upload_button, api_key_input], outputs=outputs_for_main_analysis)
dd_hist_col.change(fn=create_histogram, inputs=[state_analyzer, dd_hist_col], outputs=plot_histogram)
scatter_inputs = [state_analyzer, dd_scatter_x, dd_scatter_y, dd_scatter_color]
for dd in [dd_scatter_x, dd_scatter_y, dd_scatter_color]:
dd.change(fn=create_scatterplot, inputs=scatter_inputs, outputs=plot_scatter)
dd_drilldown_col.change(fn=analyze_single_column, inputs=[state_analyzer, dd_drilldown_col], outputs=[md_drilldown_stats, plot_drilldown])
download_report_button.click(fn=download_report_file, inputs=[state_analyzer, ai_report_output], outputs=gr.File(label="Download Report"))
return demo
# --- Main Application Logic ---
def run_full_analysis(file_obj: gr.File, api_key: str) -> Dict[gr.component, Any]:
"""Orchestrates the entire analysis pipeline upon button click."""
if file_obj is None:
raise gr.Error("CRITICAL: No file uploaded. Please select a CSV file.")
if not api_key:
raise gr.Error("CRITICAL: Gemini API key is missing. Please provide your key.")
try:
logging.info(f"Processing uploaded file: {file_obj.name}")
df = pd.read_csv(file_obj.name)
analyzer = DataAnalyzer(df)
ai_report = analyzer.generate_ai_narrative(api_key)
missing_df, num_df, cat_df = analyzer.get_profiling_tables()
fig_types, fig_missing, fig_corr = analyzer.get_overview_visuals()
meta = analyzer.metadata
all_cols, num_cols = meta['columns'], meta['numeric_cols']
return {
state_analyzer: analyzer, ai_report_output: ai_report,
download_report_button: gr.Button(visible=True),
profile_missing_df: missing_df, profile_numeric_df: num_df,
profile_categorical_df: cat_df, plot_types: fig_types,
plot_missing: fig_missing, plot_correlation: fig_corr,
dd_hist_col: gr.Dropdown(choices=num_cols, label="Select Numeric Column", visible=True),
dd_scatter_x: gr.Dropdown(choices=num_cols, label="X-Axis (Numeric)", visible=True),
dd_scatter_y: gr.Dropdown(choices=num_cols, label="Y-Axis (Numeric)", visible=True),
dd_scatter_color: gr.Dropdown(choices=all_cols, label="Color By (Optional)", visible=True),
dd_drilldown_col: gr.Dropdown(choices=all_cols, label="Select Column to Analyze", visible=True)
}
except Exception as e:
logging.error(f"A critical error occurred during file processing: {e}", exc_info=True)
raise gr.Error(f"Analysis Failed! The process stopped due to: {str(e)}")
def download_report_file(analyzer: DataAnalyzer, ai_report_text: str) -> Optional[str]:
"""Generates a comprehensive Markdown file for download."""
if not analyzer:
logging.warning("Download attempted without a valid analyzer object.")
return None
filename = f"CognitiveEDA_Report_{datetime.now().strftime('%Y%m%d_%H%M%S')}.md"
meta = analyzer.metadata
full_report = f"# CognitiveEDA - Data Discovery Report\n"
full_report += f"**Generated:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
full_report += f"## Dataset Overview\n"
full_report += f"- **Shape:** {meta['shape'][0]} rows x {meta['shape'][1]} columns\n"
full_report += f"- **Memory Footprint:** {meta['memory_usage_mb']} MB\n"
full_report += f"- **Data Quality Score:** {meta['data_quality_score']}%\n\n"
full_report += "---\n\n"
full_report += ai_report_text
with open(filename, "w", encoding="utf-8") as f:
f.write(full_report)
logging.info(f"Report file generated successfully: {filename}")
return filename
def perform_pre_flight_checks():
"""Checks for critical dependencies before launching the app."""
logging.info("Performing pre-flight dependency checks...")
required_packages = ["pandas", "gradio", "plotly", "google.generativeai", "tabulate"]
missing_packages = [pkg for pkg in required_packages if importlib.util.find_spec(pkg) is None]
if missing_packages:
logging.critical(f"Missing critical packages: {', '.join(missing_packages)}")
print("\n" + "="*80)
print("ERROR: Your environment is missing critical dependencies.")
print(f"Missing package(s): {', '.join(missing_packages)}")
print("Please install all required packages using the requirements.txt file:")
print("pip install -r requirements.txt")
print("="*80 + "\n")
sys.exit(1)
logging.info("All dependencies are satisfied. Proceeding with launch.")
if __name__ == "__main__":
perform_pre_flight_checks()
app_instance = create_ui()
app_instance.launch(debug=True, server_name="0.0.0.0") |