File size: 13,896 Bytes
b731976 788074d b34efbf 4b23857 b731976 4b23857 b731976 b34efbf 6b6515d b34efbf 71db5de b731976 b34efbf 6b6515d 99a7bc0 b731976 99a7bc0 9988477 b731976 99a7bc0 a2143ab 99a7bc0 6b6515d 4258926 31ea2bf 4258926 b731976 6b6515d b731976 4b23857 6b6515d 9988477 4258926 4b23857 6b6515d 4b23857 6b6515d b731976 99a7bc0 b731976 4258926 6b6515d 31ea2bf 6b6515d b731976 6b6515d b731976 6b6515d b731976 71db5de 99a7bc0 6b6515d 99a7bc0 b731976 9988477 4258926 a2143ab 9988477 4258926 6b6515d 4258926 6b2d9f7 6b6515d 31ea2bf 6b6515d 4b23857 6b6515d 4b23857 6b6515d 4b23857 99a7bc0 b731976 31ea2bf 6b6515d 71db5de 6b6515d 4258926 b34efbf 99a7bc0 6b6515d 4b23857 6b6515d 4258926 9988477 4258926 6b6515d b731976 4b23857 6b6515d 4b23857 b731976 31ea2bf b731976 4b23857 71db5de 31ea2bf 9988477 6b6515d b564942 6b6515d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# app.py
import streamlit as st
import json
import re
import os
import traceback
from dotenv import load_dotenv
# Import agent logic and message types
try:
from agent import ClinicalAgent, AgentState, check_red_flags # Import necessary components
from langchain_core.messages import HumanMessage, AIMessage, ToolMessage
except ImportError as e:
st.error(f"Failed to import from agent.py: {e}. Make sure agent.py is in the same directory.")
st.stop()
# --- Environment Variable Loading & Validation ---
load_dotenv()
# Check keys required by agent.py are present before initializing the agent
UMLS_API_KEY = os.environ.get("UMLS_API_KEY")
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
TAVILY_API_KEY = os.environ.get("TAVILY_API_KEY")
missing_keys = []
if not UMLS_API_KEY: missing_keys.append("UMLS_API_KEY")
if not GROQ_API_KEY: missing_keys.append("GROQ_API_KEY")
if not TAVILY_API_KEY: missing_keys.append("TAVILY_API_KEY")
if missing_keys:
st.error(f"Missing required API Key(s): {', '.join(missing_keys)}. Please set them in Hugging Face Space Secrets or environment variables.")
st.stop()
# --- App Configuration ---
class ClinicalAppSettings:
APP_TITLE = "SynapseAI (UMLS/FDA Integrated)"
PAGE_LAYOUT = "wide"
MODEL_NAME_DISPLAY = "Llama3-70b (via Groq)" # Defined in agent.py
# --- Streamlit UI ---
def main():
st.set_page_config(page_title=ClinicalAppSettings.APP_TITLE, layout=ClinicalAppSettings.PAGE_LAYOUT)
st.title(f"π©Ί {ClinicalAppSettings.APP_TITLE}")
st.caption(f"Interactive Assistant | LangGraph/Groq/Tavily/UMLS/OpenFDA | Model: {ClinicalAppSettings.MODEL_NAME_DISPLAY}")
# Initialize session state
if "messages" not in st.session_state: st.session_state.messages = []
if "patient_data" not in st.session_state: st.session_state.patient_data = None
if "summary" not in st.session_state: st.session_state.summary = None
if "agent" not in st.session_state:
try:
st.session_state.agent = ClinicalAgent()
print("ClinicalAgent successfully initialized in Streamlit session state.")
except Exception as e:
st.error(f"Failed to initialize Clinical Agent: {e}. Check API keys and dependencies.")
print(f"ERROR Initializing ClinicalAgent: {e}"); traceback.print_exc(); st.stop()
# --- Patient Data Input Sidebar ---
with st.sidebar:
st.header("π Patient Intake Form")
# Input fields... (Assume full fields as before)
st.subheader("Demographics"); age = st.number_input("Age", 0, 120, 55, key="sb_age"); sex = st.selectbox("Sex", ["Male", "Female", "Other"], key="sb_sex")
st.subheader("HPI"); chief_complaint = st.text_input("Chief Complaint", "Chest pain", key="sb_cc"); hpi_details = st.text_area("HPI Details", "55 y/o male...", height=100, key="sb_hpi"); symptoms = st.multiselect("Symptoms", ["Nausea", "Diaphoresis", "SOB", "Dizziness", "Severe Headache", "Syncope", "Hemoptysis"], default=["Nausea", "Diaphoresis"], key="sb_sym")
st.subheader("History"); pmh = st.text_area("PMH", "HTN, HLD, DM2, History of MI", key="sb_pmh"); psh = st.text_area("PSH", "Appendectomy", key="sb_psh")
st.subheader("Meds & Allergies"); current_meds_str = st.text_area("Current Meds", "Lisinopril 10mg daily\nMetformin 1000mg BID\nWarfarin 5mg daily", key="sb_meds"); allergies_str = st.text_area("Allergies", "Penicillin (rash), Aspirin", key="sb_allergies")
st.subheader("Social/Family"); social_history = st.text_area("SH", "Smoker", key="sb_sh"); family_history = st.text_area("FHx", "Father MI", key="sb_fhx")
st.subheader("Vitals & Exam"); col1, col2 = st.columns(2);
with col1: temp_c = st.number_input("Temp C", 35.0, 42.0, 36.8, format="%.1f", key="sb_temp"); hr_bpm = st.number_input("HR", 30, 250, 95, key="sb_hr"); rr_rpm = st.number_input("RR", 5, 50, 18, key="sb_rr")
with col2: bp_mmhg = st.text_input("BP", "155/90", key="sb_bp"); spo2_percent = st.number_input("SpO2", 70, 100, 96, key="sb_spo2"); pain_scale = st.slider("Pain", 0, 10, 8, key="sb_pain")
exam_notes = st.text_area("Exam Notes", "Awake, alert...", height=50, key="sb_exam")
if st.button("Start/Update Consultation", key="sb_start"):
# Compile data...
current_meds_list = [med.strip() for med in current_meds_str.split('\n') if med.strip()]
current_med_names_only = [];
for med in current_meds_list: match = re.match(r"^\s*([a-zA-Z\-]+)", med);
if match: current_med_names_only.append(match.group(1).lower())
allergies_list = []
for a in allergies_str.split(','): cleaned_allergy = a.strip();
if cleaned_allergy: match = re.match(r"^\s*([a-zA-Z\-\s/]+)(?:\s*\(.*\))?", cleaned_allergy); name_part = match.group(1).strip().lower() if match else cleaned_allergy.lower(); allergies_list.append(name_part)
# Update patient data in session state
st.session_state.patient_data = { "demographics": {"age": age, "sex": sex}, "hpi": {"chief_complaint": chief_complaint, "details": hpi_details, "symptoms": symptoms}, "pmh": {"conditions": pmh}, "psh": {"procedures": psh}, "medications": {"current": current_meds_list, "names_only": current_med_names_only}, "allergies": allergies_list, "social_history": {"details": social_history}, "family_history": {"details": family_history}, "vitals": { "temp_c": temp_c, "hr_bpm": hr_bpm, "bp_mmhg": bp_mmhg, "rr_rpm": rr_rpm, "spo2_percent": spo2_percent, "pain_scale": pain_scale}, "exam_findings": {"notes": exam_notes} }
# Call check_red_flags from agent module
red_flags = check_red_flags(st.session_state.patient_data); st.sidebar.markdown("---");
if red_flags: st.sidebar.warning("**Initial Red Flags:**"); [st.sidebar.warning(f"- {flag.replace('Red Flag: ','')}") for flag in red_flags]
else: st.sidebar.success("No immediate red flags.")
# Reset conversation and summary on new intake
initial_prompt = "Initiate consultation. Review patient data and begin analysis."
st.session_state.messages = [HumanMessage(content=initial_prompt)]
st.session_state.summary = None # Reset summary
st.success("Patient data loaded/updated.")
st.rerun()
# --- Main Chat Interface Area ---
st.header("π¬ Clinical Consultation")
# Display loop
for msg in st.session_state.messages:
if isinstance(msg, HumanMessage):
with st.chat_message("user"): st.markdown(msg.content)
elif isinstance(msg, AIMessage):
with st.chat_message("assistant"):
ai_content = msg.content; structured_output = None
try: # JSON Parsing logic...
json_match = re.search(r"```json\s*(\{.*?\})\s*```", ai_content, re.DOTALL | re.IGNORECASE)
if json_match: json_str = json_match.group(1); prefix = ai_content[:json_match.start()].strip(); suffix = ai_content[json_match.end():].strip();
if prefix: st.markdown(prefix); structured_output = json.loads(json_str);
if suffix: st.markdown(suffix)
elif ai_content.strip().startswith("{") and ai_content.strip().endswith("}"): structured_output = json.loads(ai_content); ai_content = ""
else: st.markdown(ai_content)
except Exception as e: st.markdown(ai_content); print(f"Error parsing/displaying AI JSON: {e}")
if structured_output and isinstance(structured_output, dict): # Structured JSON display logic...
st.divider(); st.subheader("π AI Analysis & Recommendations")
cols = st.columns(2);
with cols[0]: # Assessment, DDx, Risk
st.markdown("**Assessment:**"); st.markdown(f"> {structured_output.get('assessment', 'N/A')}")
st.markdown("**Differential Diagnosis:**"); ddx = structured_output.get('differential_diagnosis', []);
if ddx: [st.expander(f"{'π₯π₯π₯'[('High','Medium','Low').index(item.get('likelihood','Low')[0])] if item.get('likelihood','?')[0] in 'HML' else '?'} {item.get('diagnosis', 'Unknown')} ({item.get('likelihood','?')})").write(f"**Rationale:** {item.get('rationale', 'N/A')}") for item in ddx]
else: st.info("No DDx provided.")
# Risk Assessment Display (CORRECTED - Separate lines)
st.markdown(f"**Risk Assessment:**")
risk = structured_output.get('risk_assessment', {})
flags = risk.get('identified_red_flags', [])
concerns = risk.get("immediate_concerns", [])
comps = risk.get("potential_complications", [])
if flags:
st.warning(f"**Flags:** {', '.join(flags)}")
if concerns:
st.warning(f"**Concerns:** {', '.join(concerns)}")
if comps:
st.info(f"**Potential Complications:** {', '.join(comps)}")
# Add a message if no risks were highlighted by the AI assessment
if not flags and not concerns and not comps:
st.success("No specific risks highlighted in this AI assessment.")
with cols[1]: # Plan
st.markdown("**Recommended Plan:**"); plan = structured_output.get('recommended_plan', {});
for section in ["investigations","therapeutics","consultations","patient_education"]: st.markdown(f"_{section.replace('_',' ').capitalize()}:_"); items = plan.get(section); [st.markdown(f"- {item}") for item in items] if items and isinstance(items, list) else (st.markdown(f"- {items}") if items else st.markdown("_None_")); st.markdown("")
# Rationale & Interaction Summary
st.markdown("**Rationale & Guideline Check:**"); st.markdown(f"> {structured_output.get('rationale_summary', 'N/A')}")
interaction_summary = structured_output.get("interaction_check_summary", "");
if interaction_summary: st.markdown("**Interaction Check Summary:**"); st.markdown(f"> {interaction_summary}");
st.divider()
# Tool Call Display
if getattr(msg, 'tool_calls', None):
with st.expander("π οΈ AI requested actions", expanded=False):
if msg.tool_calls:
for tc in msg.tool_calls:
try: st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nArgs: {json.dumps(tc.get('args', {}), indent=2)}", language="json")
except Exception as display_e: st.error(f"Could not display tool call args: {display_e}", icon="β οΈ"); st.code(f"Action: {tc.get('name', 'Unknown Tool')}\nRaw Args: {tc.get('args')}")
else: st.caption("_No actions requested._")
elif isinstance(msg, ToolMessage):
tool_name_display = getattr(msg, 'name', 'tool_execution')
with st.chat_message(tool_name_display, avatar="π οΈ"):
try: # Tool message display logic...
tool_data = json.loads(msg.content); status = tool_data.get("status", "info"); message = tool_data.get("message", msg.content); details = tool_data.get("details"); warnings = tool_data.get("warnings");
if tool_name_display == "flag_risk" and status == "flagged": st.error(f"π¨ **RISK FLAGGED:** {message}", icon="π¨") # Show flag in UI too
elif status == "success" or status == "clear": st.success(f"{message}", icon="β
")
elif status == "warning": st.warning(f"{message}", icon="β οΈ");
if warnings and isinstance(warnings, list): st.caption("Details:"); [st.caption(f"- {warn}") for warn in warnings]
else: st.error(f"{message}", icon="β") # Assume error if not known status
if details: st.caption(f"Details: {details}")
except json.JSONDecodeError: st.info(f"{msg.content}") # Display raw if not JSON
except Exception as e: st.error(f"Error displaying tool message: {e}", icon="β"); st.caption(f"Raw content: {msg.content}")
# --- Chat Input Logic ---
if prompt := st.chat_input("Your message or follow-up query..."):
if not st.session_state.patient_data: st.warning("Please load patient data first."); st.stop()
if 'agent' not in st.session_state or not st.session_state.agent: st.error("Agent not initialized. Check logs."); st.stop()
user_message = HumanMessage(content=prompt); st.session_state.messages.append(user_message)
with st.chat_message("user"): st.markdown(prompt)
current_state_dict = {"messages": st.session_state.messages, "patient_data": st.session_state.patient_data, "summary": st.session_state.get("summary"), "interaction_warnings": None}
with st.spinner("SynapseAI is processing..."):
try:
final_state = st.session_state.agent.invoke_turn(current_state_dict)
st.session_state.messages = final_state.get('messages', [])
st.session_state.summary = final_state.get('summary')
except Exception as e: print(f"CRITICAL ERROR: {e}"); traceback.print_exc(); st.error(f"Error: {e}"); st.session_state.messages.append(AIMessage(content=f"Error processing request: {e}"))
st.rerun()
# Disclaimer
st.markdown("---"); st.warning("**Disclaimer:** SynapseAI is for demonstration...")
if __name__ == "__main__":
main() |