File size: 5,088 Bytes
fb37d48
36d7e68
 
 
 
0e133d3
d625ced
 
 
4194261
36d7e68
4194261
0e133d3
af62734
36d7e68
8b780e6
a33e195
36d7e68
4f4bbd6
36d7e68
4f4bbd6
 
 
d205403
36d7e68
 
4f4bbd6
36d7e68
 
 
 
4f4bbd6
 
 
 
 
 
 
 
ab05725
4f4bbd6
 
80942ac
 
4f4bbd6
80942ac
 
 
 
 
 
 
 
 
 
018293e
4f4bbd6
 
 
 
 
 
 
7039cd5
 
4f4bbd6
7039cd5
4f4bbd6
 
 
 
 
 
 
 
80942ac
 
4f4bbd6
 
80942ac
4f4bbd6
80942ac
 
 
 
 
4f4bbd6
 
 
 
 
 
 
 
 
 
 
a5673c7
36d7e68
 
 
 
4f4bbd6
 
 
d205403
4f4bbd6
 
 
 
 
 
 
 
 
 
36d7e68
4f4bbd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
os.system('pip install transformers')
os.system('pip install datasets')
os.system('pip install gradio')
os.system('pip install minijinja')
os.system('pip install PyMuPDF')

import gradio as gr
from huggingface_hub import InferenceClient
from transformers import pipeline
from datasets import load_dataset
import time
import fitz  # PyMuPDF

dataset = load_dataset("ibunescu/qa_legal_dataset_train")

    return evaluation

def score_argument_from_outcome(outcome, argument):

    if "Prosecutor" in outcome:
        prosecutor_score = outcome.count("Prosecutor") * 2
        if "won" in outcome and "Prosecutor" in outcome:
}
"""


def chat_between_bots(system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message):
    response1, history1 = list(respond(message, history1, system_message1, max_tokens, temperature, top_p))[-1]
    response2, history2 = list(respond(message, history2, system_message2, max_tokens, temperature, top_p))[-1]
    
    return response1, response2, history1, history2, shared_history, outcome, prosecutor_score_color, defense_score_color

def extract_text_from_pdf(pdf_file):
    text = ""
    doc = fitz.open(pdf_file)
    for page in doc:
        text += page.get_text()
    return text

def ask_about_pdf(pdf_text, question):
    prompt = f"PDF Content: {pdf_text}\n\nQuestion: {question}\n\nAnswer:"
    response = ""
    for message in client.chat_completion(
        [{"role": "system", "content": "You are a legal expert answering questions based on the PDF content provided."},
         {"role": "user", "content": prompt}],
        max_tokens=512,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
    return response

def update_pdf_gallery_and_extract_text(pdf_files):
    if len(pdf_files) > 0:
        pdf_text = extract_text_from_pdf(pdf_files[0].name)
    else:
        pdf_text = ""
    return pdf_files, pdf_text

def add_message(history, message):
    for x in message["files"]:
    return history, gr.MultimodalTextbox(value=None, interactive=False)

def bot(history):
    system_message = "You are a helpful assistant."
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    response = ""
    for message in client.chat_completion(
        messages,
        max_tokens=150,
        stream=True,
        temperature=0.6,
        top_p=0.95,
    ):
        token = message.choices[0].delta.content
        if token is not None:
            response += token
        history[-1][1] = response
        yield history

def print_like_dislike(x: gr.LikeData):
    print(x.index, x.value, x.liked)

def reset_conversation():
    return [], [], "", "", ""

def save_conversation(history1, history2, shared_history):
    return history1, history2, shared_history

with gr.Blocks(css=custom_css) as demo:
    history1 = gr.State([])
    history2 = gr.State([])
    shared_history = gr.State([])
    pdf_files = gr.State([])
    pdf_text = gr.State("")
    
    with gr.Tab("Argument Evaluation"):
        message = gr.Textbox(label="Case to Argue")
        
        shared_argument = gr.Textbox(label="Case Outcome", interactive=True)
        submit_btn = gr.Button("Argue")
        clear_btn = gr.Button("Clear and Reset")
        save_btn = gr.Button("Save Conversation")
        
        submit_btn.click(chat_between_bots, inputs=[system_message1, system_message2, max_tokens, temperature, top_p, history1, history2, shared_history, message], outputs=[prosecutor_response, defense_response, history1, history2, shared_argument, prosecutor_score_color, defense_score_color])
        clear_btn.click(reset_conversation, outputs=[history1, history2, shared_history, prosecutor_response, defense_response, shared_argument])
        save_btn.click(save_conversation, inputs=[history1, history2, shared_history], outputs=[history1, history2, shared_history])
    
    with gr.Tab("PDF Management"):
        pdf_upload = gr.File(label="Upload Case Files (PDF)", file_types=[".pdf"])
        pdf_gallery = gr.Gallery(label="PDF Gallery")
        pdf_view = gr.Textbox(label="PDF Content", interactive=False, elem_classes=["scroll-box"])
        pdf_question = gr.Textbox(label="Ask a Question about the PDF")
        pdf_answer = gr.Textbox(label="Answer", interactive=False, elem_classes=["scroll-box"])
        pdf_upload_btn = gr.Button("Update PDF Gallery")
        pdf_ask_btn = gr.Button("Ask")

        pdf_upload_btn.click(update_pdf_gallery_and_extract_text, inputs=[pdf_upload], outputs=[pdf_gallery, pdf_text])
        pdf_text.change(fn=lambda x: x, inputs=pdf_text, outputs=pdf_view)
        pdf_ask_btn.click(ask_about_pdf, inputs=[pdf_text, pdf_question], outputs=pdf_answer)
    
    with gr.Tab("Chatbot"):
        chatbot = gr.Chatbot(