File size: 5,361 Bytes
0e95308
 
 
bf8e143
 
 
 
 
 
da4b0c7
 
bf8e143
0e95308
bf8e143
0e95308
 
bf8e143
 
0e95308
bf8e143
3e83acd
 
da4b0c7
 
 
 
 
 
 
 
 
 
bf8e143
 
0e95308
bf8e143
 
 
0e95308
 
da4b0c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf8e143
0e95308
bf8e143
 
 
 
 
0e95308
 
 
 
bf8e143
0e95308
bf8e143
0e95308
 
da4b0c7
04356f4
da4b0c7
 
 
cb720fe
0280e01
da4b0c7
 
 
 
 
 
 
 
 
 
0280e01
04356f4
bf8e143
04356f4
0280e01
 
da4b0c7
7b27360
2978c6a
 
 
 
da4b0c7
 
 
 
04356f4
2978c6a
da4b0c7
 
 
 
 
 
 
 
 
 
 
 
 
 
2978c6a
da4b0c7
 
 
 
 
 
 
 
 
04356f4
 
2978c6a
04356f4
da4b0c7
04356f4
da4b0c7
 
2978c6a
da4b0c7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import json
from sentence_transformers import SentenceTransformer, util
from groq import Groq
import datetime
import requests
from io import BytesIO
from PIL import Image, ImageDraw, ImageFont
import numpy as np
from dotenv import load_dotenv
from datasets import load_dataset, Dataset
import pandas as pd
import os

# Load environment variables
load_dotenv()

# Initialize Groq client
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))

# Load models and dataset
similarity_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')

# Constants
HF_DATASET_REPO = "midrees2806/unmatched_queries"
HF_TOKEN = os.getenv("HF_TOKEN")
GREETINGS = [
    "hi", "hello", "hey", "good morning", "good afternoon", "good evening",
    "assalam o alaikum", "salam", "aoa", "hi there",
    "hey there", "greetings"
]

# Load dataset
with open('dataset.json', 'r') as f:
    dataset = json.load(f)

# Precompute embeddings
dataset_questions = [item.get("input", "").lower().strip() for item in dataset]
dataset_answers = [item.get("response", "") for item in dataset]
dataset_embeddings = similarity_model.encode(dataset_questions, convert_to_tensor=True)

# Save unmatched queries to Hugging Face
def manage_unmatched_queries(query: str):
    try:
        timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        try:
            ds = load_dataset(HF_DATASET_REPO, token=HF_TOKEN)
            df = ds["train"].to_pandas()
        except:
            df = pd.DataFrame(columns=["Query", "Timestamp", "Processed"])
        if query not in df["Query"].values:
            new_entry = {"Query": query, "Timestamp": timestamp, "Processed": False}
            df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
            updated_ds = Dataset.from_pandas(df)
            updated_ds.push_to_hub(HF_DATASET_REPO, token=HF_TOKEN)
    except Exception as e:
        print(f"Failed to save query: {e}")

# Query Groq LLM
def query_groq_llm(prompt, model_name="llama3-70b-8192"):
    try:
        chat_completion = groq_client.chat.completions.create(
            messages=[{
                "role": "user",
                "content": prompt
            }],
            model=model_name,
            temperature=0.7,
            max_tokens=500
        )
        return chat_completion.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error querying Groq API: {e}")
        return ""

# Main logic function
def get_best_answer(user_input):
    if not user_input.strip():
        return "Please enter a valid question."

    user_input_lower = user_input.lower().strip()

    # 🟑 Greet back if user greets
    if any(greet in user_input_lower for greet in GREETINGS):
        greeting_response = query_groq_llm(
            f"You are an official assistant for University of Education Lahore. "
            f"Respond to this greeting in a friendly and professional manner: {user_input}"
        )
        return greeting_response if greeting_response else "Hello! How can I assist you today?"

    # πŸ’° Fee-specific shortcut
    if any(keyword in user_input_lower for keyword in ["semester fee", "semester fees"]):
        return (
            "πŸ’° For complete and up-to-date fee details for this program, we recommend visiting the official University of Education fee structure page.\n"
            "You’ll find comprehensive information regarding tuition, admission charges, and other applicable fees there.\n"
            "πŸ”— https://ue.edu.pk/allfeestructure.php"
        )

    # πŸ” Similarity-based matching
    user_embedding = similarity_model.encode(user_input_lower, convert_to_tensor=True)
    similarities = util.pytorch_cos_sim(user_embedding, dataset_embeddings)[0]
    best_match_idx = similarities.argmax().item()
    best_score = similarities[best_match_idx].item()

    if best_score < 0.65:
        manage_unmatched_queries(user_input)

    # 🧠 Use original dataset answer if matched well
    if best_score >= 0.65:
        original_answer = dataset_answers[best_match_idx]
        prompt = f"""Name is UOE AI Assistant! You are an official assistant for the University of Education Lahore.

Rephrase the following official answer clearly and professionally. 
Use structured formatting (like headings, bullet points, or numbered lists) where appropriate.
DO NOT add any new or extra information. ONLY rephrase and improve the clarity and formatting of the original answer.

### Question:
{user_input}

### Original Answer:
{original_answer}

### Rephrased Answer:
"""
    else:
        prompt = f"""Name is UOE AI Assistant! As an official assistant for University of Education Lahore, provide a helpful response:
Include relevant details about university policies.
If unsure, direct to official channels.

### Question:
{user_input}

### Official Answer:
"""

    llm_response = query_groq_llm(prompt)

    if llm_response:
        for marker in ["Improved Answer:", "Official Answer:", "Rephrased Answer:"]:
            if marker in llm_response:
                return llm_response.split(marker)[-1].strip()
        return llm_response
    else:
        return dataset_answers[best_match_idx] if best_score >= 0.65 else (
            "For official information:\n"
            "πŸ“ž +92-42-99262231-33\n"
            "βœ‰οΈ [email protected]\n"
            "🌐 https://ue.edu.pk"
        )