File size: 7,056 Bytes
f1fd41e 7ae54ea 6f93dce fa2a9d3 c5dd812 fa2a9d3 c5dd812 580eaed fa2a9d3 c5dd812 c54282a c5dd812 2f665a8 59219bf c5dd812 59219bf c5dd812 fa2a9d3 c54282a fa2a9d3 c54282a fa2a9d3 c5dd812 59219bf c5dd812 2f665a8 c5dd812 2f665a8 7625bb8 45ef073 c5dd812 6f93dce 59219bf c5dd812 f1fd41e c5dd812 59219bf c5dd812 c54282a c5dd812 59219bf c5dd812 59219bf c5dd812 c54282a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os
import time
import torch
import warnings
from flask import Flask, request, jsonify
from flask_cors import CORS
from transformers import AutoModelForCausalLM, AutoTokenizer, logging
import gradio as gr
# Suppress warnings
warnings.filterwarnings("ignore")
logging.set_verbosity_error()
# Global variables
# Updated to use a model that's actually available on Hugging Face
MODEL_ID = "microsoft/phi-2" # Alternative: "microsoft/phi-1_5" or any other available model
MAX_LENGTH = 2048
MAX_NEW_TOKENS = 512
TEMPERATURE = 0.7
TOP_P = 0.9
THINKING_STEPS = 3 # Number of thinking steps
# Global variables for model and tokenizer
model = None
tokenizer = None
# Function to load model and tokenizer
def load_model_and_tokenizer():
global model, tokenizer
if model is not None and tokenizer is not None:
return
print(f"Loading model: {MODEL_ID}")
try:
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_ID,
use_fast=True,
trust_remote_code=True
)
# Load model with optimizations for limited resources
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16,
load_in_4bit=True,
trust_remote_code=True
)
print("Model and tokenizer loaded successfully!")
except Exception as e:
import traceback
print(f"Error loading model: {str(e)}")
print(traceback.format_exc())
raise
# Initialize Flask app
app = Flask(__name__)
CORS(app)
# Helper function for step-by-step thinking
def generate_with_thinking(prompt, thinking_steps=THINKING_STEPS):
# Initialize conversation with prompt
full_prompt = prompt
# Add thinking prefix
thinking_prompt = full_prompt + "\n\nLet me think through this step by step:"
# Generate thinking steps
thinking_output = ""
for step in range(thinking_steps):
# Generate step i of thinking
inputs = tokenizer(thinking_prompt + thinking_output, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_length=MAX_LENGTH,
max_new_tokens=MAX_NEW_TOKENS // thinking_steps,
temperature=TEMPERATURE,
top_p=TOP_P,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Extract only new tokens
new_tokens = outputs[0][inputs["input_ids"].shape[1]:]
thinking_step_output = tokenizer.decode(new_tokens, skip_special_tokens=True)
# Add this step to our thinking output
thinking_output += f"\n\nStep {step+1}: {thinking_step_output}"
# Now generate final answer based on the thinking
final_prompt = full_prompt + "\n\n" + thinking_output + "\n\nBased on this thinking, my final answer is:"
inputs = tokenizer(final_prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
inputs["input_ids"],
max_length=MAX_LENGTH,
max_new_tokens=MAX_NEW_TOKENS // 2,
temperature=TEMPERATURE,
top_p=TOP_P,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Extract only the new tokens (the answer)
new_tokens = outputs[0][inputs["input_ids"].shape[1]:]
answer = tokenizer.decode(new_tokens, skip_special_tokens=True)
# Return thinking process and final answer
return {
"thinking": thinking_output,
"answer": answer,
"full_response": thinking_output + "\n\nBased on this thinking, my final answer is: " + answer
}
# API endpoint for chat
@app.route('/api/chat', methods=['POST'])
def chat():
try:
# Ensure model is loaded
if model is None or tokenizer is None:
load_model_and_tokenizer()
data = request.json
prompt = data.get('prompt', '')
include_thinking = data.get('include_thinking', False)
if not prompt:
return jsonify({'error': 'Prompt is required'}), 400
start_time = time.time()
response = generate_with_thinking(prompt)
end_time = time.time()
result = {
'answer': response['answer'],
'time_taken': round(end_time - start_time, 2)
}
# Include thinking steps if requested
if include_thinking:
result['thinking'] = response['thinking']
return jsonify(result)
except Exception as e:
import traceback
print(f"Error in chat endpoint: {str(e)}")
print(traceback.format_exc())
return jsonify({'error': str(e)}), 500
# Simple health check endpoint
@app.route('/health', methods=['GET'])
def health_check():
return jsonify({'status': 'ok'})
# Gradio Web UI
def create_ui():
with gr.Blocks() as demo:
gr.Markdown("# AI Assistant with Step-by-Step Thinking")
with gr.Row():
with gr.Column():
input_text = gr.Textbox(
label="Your question",
placeholder="Ask me anything...",
lines=3
)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
show_thinking = gr.Checkbox(label="Show thinking steps", value=True)
with gr.Column():
thinking_output = gr.Markdown(label="Thinking Process", visible=True)
answer_output = gr.Markdown(label="Final Answer")
def respond(question, show_thinking):
if not question.strip():
return "", "Please enter a question"
# Ensure model is loaded
if model is None or tokenizer is None:
load_model_and_tokenizer()
response = generate_with_thinking(question)
if show_thinking:
return response["thinking"], response["answer"]
else:
return "", response["answer"]
submit_btn.click(
respond,
inputs=[input_text, show_thinking],
outputs=[thinking_output, answer_output]
)
clear_btn.click(
lambda: ("", "", ""),
inputs=None,
outputs=[input_text, thinking_output, answer_output]
)
return demo
# Create Gradio UI and launch the app
if __name__ == "__main__":
# Load model at startup
load_model_and_tokenizer()
# Create and launch Gradio interface
demo = create_ui()
demo.launch(server_name="0.0.0.0", server_port=7860, share=True) |