Thinking / app.py
mike23415's picture
Update app.py
98ee9d3 verified
raw
history blame
10.5 kB
import os
import time
import json
import gc # For garbage collection
from pathlib import Path
from flask import Flask, request, jsonify, Response
from flask_cors import CORS
import torch
# Create cache directory if not exists
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache'))
cache_dir.mkdir(parents=True, exist_ok=True)
app = Flask(__name__)
CORS(app) # Allow cross-origin requests
# Model configuration
# Use DeepSeek R1 Distill Qwen 1.5B model (much lighter than 7B)
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
MAX_NEW_TOKENS = 256
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda"
# Initialize model variables
tokenizer = None
model = None
def load_model():
"""Load model on first request to save memory at startup"""
global tokenizer, model
if tokenizer is not None and model is not None:
return True
try:
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
print(f"Loading model {MODEL_NAME}...")
print(f"Using device: {DEVICE}")
print(f"Cache directory: {cache_dir}")
# Use 4-bit quantization for memory efficiency if on CUDA
if DEVICE == "cuda":
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True
)
else:
# For CPU, we'll use a different optimization approach
quantization_config = None
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
trust_remote_code=True
)
# Configure token if HF_TOKEN is set
hf_token = os.environ.get("HF_TOKEN")
token_kwargs = {"token": hf_token} if hf_token else {}
# Additional memory optimization settings for low resource environments
if DEVICE == "cpu":
# Load model with 8-bit quantization for CPU
try:
# Try int8 quantization for CPU
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
load_in_8bit=True,
low_cpu_mem_usage=True,
trust_remote_code=True,
**token_kwargs
)
except Exception as e:
print(f"8-bit quantization failed, falling back to standard loading: {str(e)}")
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
low_cpu_mem_usage=True,
trust_remote_code=True,
**token_kwargs
)
else:
# Load model with 4-bit quantization for CUDA
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
cache_dir=str(cache_dir),
device_map="auto",
torch_dtype=torch.float16,
quantization_config=quantization_config,
low_cpu_mem_usage=True,
trust_remote_code=True,
**token_kwargs
)
print("βœ… Model loaded successfully!")
return True
except Exception as e:
print(f"❌ Model loading failed: {str(e)}")
return False
def stream_generator(prompt):
"""Generator function for streaming response with thinking steps"""
# Ensure model is loaded
if not load_model():
yield json.dumps({"type": "error", "content": "Model not loaded"}) + '\n'
return
# Thinking phases
thinking_steps = [
"πŸ” Analyzing your question...",
"🧠 Processing...",
"πŸ’‘ Formulating response..."
]
# Stream thinking steps (fewer steps, faster timing for lighter model)
for step in thinking_steps:
yield json.dumps({"type": "thinking", "content": step}) + '\n'
time.sleep(0.5) # Reduced timing for faster response
# Prepare streaming generation
try:
# Format prompt for the model (DeepSeek specific)
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(formatted_prompt, return_tensors="pt")
if DEVICE == "cuda":
inputs = inputs.to("cuda")
# Use memory efficient approach
with torch.no_grad():
generated_ids = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
return_dict_in_generate=True,
output_scores=False)
# Get output sequence
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):]
# Stream in slightly larger chunks for better performance
full_output = ""
chunk_size = 5 # Increased number of tokens per chunk
for i in range(0, len(output_ids), chunk_size):
chunk_ids = output_ids[i:i+chunk_size]
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True)
full_output += chunk_text
yield json.dumps({
"type": "answer",
"content": chunk_text
}) + '\n'
# Smaller delay for faster streaming
time.sleep(0.03)
except Exception as e:
import traceback
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
print(error_details)
yield json.dumps({
"type": "error",
"content": f"Generation error: {str(e)}"
}) + '\n'
# Signal completion
yield json.dumps({"type": "complete"}) + '\n'
# Clean up memory aggressively
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
@app.route('/stream_chat', methods=['POST'])
def stream_chat():
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
return Response(
stream_generator(prompt),
mimetype='text/event-stream',
headers={
'Cache-Control': 'no-cache',
'X-Accel-Buffering': 'no', # Prevent Nginx buffering
'Connection': 'keep-alive'
}
)
@app.route('/chat', methods=['POST'])
def chat():
# Ensure model is loaded
if not load_model():
return jsonify({"error": "Model failed to load"}), 500
data = request.get_json()
prompt = data.get('prompt', '').strip()
if not prompt:
return jsonify({"error": "Empty prompt"}), 400
try:
# Format prompt for DeepSeek model
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
inputs = tokenizer(formatted_prompt, return_tensors="pt")
if DEVICE == "cuda":
inputs = inputs.to("cuda")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
temperature=0.7,
top_p=0.9,
do_sample=True,
pad_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True)
# Clean up memory
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
return jsonify({"response": response})
except Exception as e:
import traceback
error_details = f"Error: {str(e)}\n{traceback.format_exc()}"
print(error_details)
return jsonify({"error": str(e)}), 500
@app.route('/health', methods=['GET'])
def health_check():
model_loaded = tokenizer is not None and model is not None
memory_info = "N/A"
# Get memory usage stats
if torch.cuda.is_available():
memory_info = f"{torch.cuda.memory_allocated()/1024**2:.2f}MB / {torch.cuda.get_device_properties(0).total_memory/1024**2:.2f}MB"
else:
import psutil
memory_info = f"{psutil.virtual_memory().used/1024**3:.2f}GB / {psutil.virtual_memory().total/1024**3:.2f}GB"
try:
# Check if we need to load the model
if not model_loaded and request.args.get('load') == 'true':
model_loaded = load_model()
except Exception as e:
print(f"Health check error: {str(e)}")
status = {
"status": "ok" if model_loaded else "waiting",
"model": MODEL_NAME,
"model_loaded": model_loaded,
"device": DEVICE,
"cache_dir": str(cache_dir),
"max_tokens": MAX_NEW_TOKENS,
"memory_usage": memory_info
}
return jsonify(status)
@app.route('/unload', methods=['POST'])
def unload_model():
"""Endpoint to manually unload model and free memory"""
global model, tokenizer
if model is not None:
del model
model = None
if tokenizer is not None:
del tokenizer
tokenizer = None
# Force garbage collection
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return jsonify({"status": "Model unloaded", "memory_freed": True})
@app.route('/')
def home():
return jsonify({
"service": "DeepSeek-1.5B Chat API",
"status": "online",
"endpoints": {
"POST /chat": "Single-response chat",
"POST /stream_chat": "Streaming chat with thinking steps",
"GET /health": "Service health check",
"POST /unload": "Unload model to free memory"
},
"config": {
"model": MODEL_NAME,
"max_tokens": MAX_NEW_TOKENS,
"device": DEVICE,
"cache_location": str(cache_dir)
}
})
if __name__ == '__main__':
# Load model at startup only if explicitly requested
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true':
load_model()
port = int(os.environ.get("PORT", 5000))
app.run(host='0.0.0.0', port=port)