|
import os |
|
import time |
|
import json |
|
import gc |
|
from pathlib import Path |
|
from flask import Flask, request, jsonify, Response |
|
from flask_cors import CORS |
|
import torch |
|
|
|
|
|
cache_dir = Path(os.getenv('TRANSFORMERS_CACHE', '/app/cache')) |
|
cache_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
app = Flask(__name__) |
|
CORS(app) |
|
|
|
|
|
|
|
MODEL_NAME = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" |
|
MAX_NEW_TOKENS = 256 |
|
DEVICE = "cpu" if not torch.cuda.is_available() else "cuda" |
|
|
|
|
|
tokenizer = None |
|
model = None |
|
|
|
def load_model(): |
|
"""Load model on first request to save memory at startup""" |
|
global tokenizer, model |
|
|
|
if tokenizer is not None and model is not None: |
|
return True |
|
|
|
try: |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
print(f"Loading model {MODEL_NAME}...") |
|
print(f"Using device: {DEVICE}") |
|
print(f"Cache directory: {cache_dir}") |
|
|
|
|
|
if DEVICE == "cuda": |
|
quantization_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_quant_type="nf4", |
|
bnb_4bit_use_double_quant=True |
|
) |
|
else: |
|
|
|
quantization_config = None |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
MODEL_NAME, |
|
cache_dir=str(cache_dir), |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
hf_token = os.environ.get("HF_TOKEN") |
|
token_kwargs = {"token": hf_token} if hf_token else {} |
|
|
|
|
|
if DEVICE == "cpu": |
|
|
|
try: |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
cache_dir=str(cache_dir), |
|
load_in_8bit=True, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**token_kwargs |
|
) |
|
except Exception as e: |
|
print(f"8-bit quantization failed, falling back to standard loading: {str(e)}") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
cache_dir=str(cache_dir), |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**token_kwargs |
|
) |
|
else: |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
cache_dir=str(cache_dir), |
|
device_map="auto", |
|
torch_dtype=torch.float16, |
|
quantization_config=quantization_config, |
|
low_cpu_mem_usage=True, |
|
trust_remote_code=True, |
|
**token_kwargs |
|
) |
|
|
|
print("β
Model loaded successfully!") |
|
return True |
|
except Exception as e: |
|
print(f"β Model loading failed: {str(e)}") |
|
return False |
|
|
|
def stream_generator(prompt): |
|
"""Generator function for streaming response with thinking steps""" |
|
|
|
if not load_model(): |
|
yield json.dumps({"type": "error", "content": "Model not loaded"}) + '\n' |
|
return |
|
|
|
|
|
thinking_steps = [ |
|
"π Analyzing your question...", |
|
"π§ Processing...", |
|
"π‘ Formulating response..." |
|
] |
|
|
|
|
|
for step in thinking_steps: |
|
yield json.dumps({"type": "thinking", "content": step}) + '\n' |
|
time.sleep(0.5) |
|
|
|
|
|
try: |
|
|
|
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" |
|
|
|
inputs = tokenizer(formatted_prompt, return_tensors="pt") |
|
if DEVICE == "cuda": |
|
inputs = inputs.to("cuda") |
|
|
|
|
|
with torch.no_grad(): |
|
generated_ids = model.generate( |
|
**inputs, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id, |
|
return_dict_in_generate=True, |
|
output_scores=False) |
|
|
|
|
|
output_ids = generated_ids.sequences[0][len(inputs.input_ids[0]):] |
|
|
|
|
|
full_output = "" |
|
chunk_size = 5 |
|
for i in range(0, len(output_ids), chunk_size): |
|
chunk_ids = output_ids[i:i+chunk_size] |
|
chunk_text = tokenizer.decode(chunk_ids, skip_special_tokens=True) |
|
full_output += chunk_text |
|
|
|
yield json.dumps({ |
|
"type": "answer", |
|
"content": chunk_text |
|
}) + '\n' |
|
|
|
|
|
time.sleep(0.03) |
|
|
|
except Exception as e: |
|
import traceback |
|
error_details = f"Error: {str(e)}\n{traceback.format_exc()}" |
|
print(error_details) |
|
yield json.dumps({ |
|
"type": "error", |
|
"content": f"Generation error: {str(e)}" |
|
}) + '\n' |
|
|
|
|
|
yield json.dumps({"type": "complete"}) + '\n' |
|
|
|
|
|
if DEVICE == "cuda": |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
@app.route('/stream_chat', methods=['POST']) |
|
def stream_chat(): |
|
data = request.get_json() |
|
prompt = data.get('prompt', '').strip() |
|
|
|
if not prompt: |
|
return jsonify({"error": "Empty prompt"}), 400 |
|
|
|
return Response( |
|
stream_generator(prompt), |
|
mimetype='text/event-stream', |
|
headers={ |
|
'Cache-Control': 'no-cache', |
|
'X-Accel-Buffering': 'no', |
|
'Connection': 'keep-alive' |
|
} |
|
) |
|
|
|
@app.route('/chat', methods=['POST']) |
|
def chat(): |
|
|
|
if not load_model(): |
|
return jsonify({"error": "Model failed to load"}), 500 |
|
|
|
data = request.get_json() |
|
prompt = data.get('prompt', '').strip() |
|
|
|
if not prompt: |
|
return jsonify({"error": "Empty prompt"}), 400 |
|
|
|
try: |
|
|
|
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" |
|
|
|
inputs = tokenizer(formatted_prompt, return_tensors="pt") |
|
if DEVICE == "cuda": |
|
inputs = inputs.to("cuda") |
|
|
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
temperature=0.7, |
|
top_p=0.9, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id) |
|
|
|
response = tokenizer.decode(outputs[0][len(inputs.input_ids[0]):], skip_special_tokens=True) |
|
|
|
|
|
if DEVICE == "cuda": |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
return jsonify({"response": response}) |
|
|
|
except Exception as e: |
|
import traceback |
|
error_details = f"Error: {str(e)}\n{traceback.format_exc()}" |
|
print(error_details) |
|
return jsonify({"error": str(e)}), 500 |
|
|
|
@app.route('/health', methods=['GET']) |
|
def health_check(): |
|
model_loaded = tokenizer is not None and model is not None |
|
memory_info = "N/A" |
|
|
|
|
|
if torch.cuda.is_available(): |
|
memory_info = f"{torch.cuda.memory_allocated()/1024**2:.2f}MB / {torch.cuda.get_device_properties(0).total_memory/1024**2:.2f}MB" |
|
else: |
|
import psutil |
|
memory_info = f"{psutil.virtual_memory().used/1024**3:.2f}GB / {psutil.virtual_memory().total/1024**3:.2f}GB" |
|
|
|
try: |
|
|
|
if not model_loaded and request.args.get('load') == 'true': |
|
model_loaded = load_model() |
|
except Exception as e: |
|
print(f"Health check error: {str(e)}") |
|
|
|
status = { |
|
"status": "ok" if model_loaded else "waiting", |
|
"model": MODEL_NAME, |
|
"model_loaded": model_loaded, |
|
"device": DEVICE, |
|
"cache_dir": str(cache_dir), |
|
"max_tokens": MAX_NEW_TOKENS, |
|
"memory_usage": memory_info |
|
} |
|
return jsonify(status) |
|
|
|
@app.route('/unload', methods=['POST']) |
|
def unload_model(): |
|
"""Endpoint to manually unload model and free memory""" |
|
global model, tokenizer |
|
|
|
if model is not None: |
|
del model |
|
model = None |
|
|
|
if tokenizer is not None: |
|
del tokenizer |
|
tokenizer = None |
|
|
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
return jsonify({"status": "Model unloaded", "memory_freed": True}) |
|
|
|
@app.route('/') |
|
def home(): |
|
return jsonify({ |
|
"service": "DeepSeek-1.5B Chat API", |
|
"status": "online", |
|
"endpoints": { |
|
"POST /chat": "Single-response chat", |
|
"POST /stream_chat": "Streaming chat with thinking steps", |
|
"GET /health": "Service health check", |
|
"POST /unload": "Unload model to free memory" |
|
}, |
|
"config": { |
|
"model": MODEL_NAME, |
|
"max_tokens": MAX_NEW_TOKENS, |
|
"device": DEVICE, |
|
"cache_location": str(cache_dir) |
|
} |
|
}) |
|
|
|
if __name__ == '__main__': |
|
|
|
if os.getenv('PRELOAD_MODEL', 'false').lower() == 'true': |
|
load_model() |
|
|
|
port = int(os.environ.get("PORT", 5000)) |
|
app.run(host='0.0.0.0', port=port) |