Spaces:
Running
Running
from abc import ABCMeta, abstractmethod | |
from cv2 import norm | |
import torch | |
from torch import layer_norm, nn | |
import torch.nn.functional as F | |
from mmcv.runner import BaseModule | |
import numpy as np | |
from ..builder import SUBMODULES, build_attention | |
from .position_encoding import SinusoidalPositionalEncoding, LearnedPositionalEncoding | |
from ..utils.stylization_block import StylizationBlock | |
import math | |
import clip | |
def timestep_embedding(timesteps, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def set_requires_grad(nets, requires_grad=False): | |
"""Set requies_grad for all the networks. | |
Args: | |
nets (nn.Module | list[nn.Module]): A list of networks or a single | |
network. | |
requires_grad (bool): Whether the networks require gradients or not | |
""" | |
if not isinstance(nets, list): | |
nets = [nets] | |
for net in nets: | |
if net is not None: | |
for param in net.parameters(): | |
param.requires_grad = requires_grad | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class FFN(nn.Module): | |
def __init__(self, latent_dim, ffn_dim, dropout, time_embed_dim): | |
super().__init__() | |
self.linear1 = nn.Linear(latent_dim, ffn_dim) | |
self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim)) | |
self.activation = nn.GELU() | |
self.dropout = nn.Dropout(dropout) | |
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout) | |
def forward(self, x, emb, **kwargs): | |
y = self.linear2(self.dropout(self.activation(self.linear1(x)))) | |
y = x + self.proj_out(y, emb) | |
return y | |
class DecoderLayer(nn.Module): | |
def __init__(self, | |
sa_block_cfg=None, | |
ca_block_cfg=None, | |
ffn_cfg=None): | |
super().__init__() | |
self.sa_block = build_attention(sa_block_cfg) | |
self.ca_block = build_attention(ca_block_cfg) | |
self.ffn = FFN(**ffn_cfg) | |
def forward(self, **kwargs): | |
if self.sa_block is not None: | |
x = self.sa_block(**kwargs) | |
kwargs.update({'x': x}) | |
if self.ca_block is not None: | |
x = self.ca_block(**kwargs) | |
kwargs.update({'x': x}) | |
if self.ffn is not None: | |
x = self.ffn(**kwargs) | |
return x | |
class DiffusionTransformer(BaseModule, metaclass=ABCMeta): | |
def __init__(self, | |
input_feats, | |
max_seq_len=240, | |
latent_dim=512, | |
time_embed_dim=2048, | |
num_layers=8, | |
sa_block_cfg=None, | |
ca_block_cfg=None, | |
ffn_cfg=None, | |
text_encoder=None, | |
use_cache_for_text=False, | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.input_feats = input_feats | |
self.max_seq_len = max_seq_len | |
self.latent_dim = latent_dim | |
self.num_layers = num_layers | |
self.time_embed_dim = time_embed_dim | |
self.sequence_embedding = nn.Parameter(torch.randn(max_seq_len, latent_dim)) | |
self.use_cache_for_text = use_cache_for_text | |
if use_cache_for_text: | |
self.text_cache = {} | |
self.build_text_encoder(text_encoder) | |
# Input Embedding | |
self.joint_embed = nn.Linear(self.input_feats, self.latent_dim) | |
self.time_embed = nn.Sequential( | |
nn.Linear(self.latent_dim, self.time_embed_dim), | |
nn.SiLU(), | |
nn.Linear(self.time_embed_dim, self.time_embed_dim), | |
) | |
self.build_temporal_blocks(sa_block_cfg, ca_block_cfg, ffn_cfg) | |
# Output Module | |
self.out = zero_module(nn.Linear(self.latent_dim, self.input_feats)) | |
def build_temporal_blocks(self, sa_block_cfg, ca_block_cfg, ffn_cfg): | |
self.temporal_decoder_blocks = nn.ModuleList() | |
for i in range(self.num_layers): | |
self.temporal_decoder_blocks.append( | |
DecoderLayer( | |
sa_block_cfg=sa_block_cfg, | |
ca_block_cfg=ca_block_cfg, | |
ffn_cfg=ffn_cfg | |
) | |
) | |
def build_text_encoder(self, text_encoder): | |
text_latent_dim = text_encoder['latent_dim'] | |
num_text_layers = text_encoder.get('num_layers', 0) | |
text_ff_size = text_encoder.get('ff_size', 2048) | |
pretrained_model = text_encoder['pretrained_model'] | |
text_num_heads = text_encoder.get('num_heads', 4) | |
dropout = text_encoder.get('dropout', 0) | |
activation = text_encoder.get('activation', 'gelu') | |
self.use_text_proj = text_encoder.get('use_text_proj', False) | |
if pretrained_model == 'clip': | |
self.clip, _ = clip.load('ViT-B/32', "cpu") | |
set_requires_grad(self.clip, False) | |
if text_latent_dim != 512: | |
self.text_pre_proj = nn.Linear(512, text_latent_dim) | |
else: | |
self.text_pre_proj = nn.Identity() | |
else: | |
raise NotImplementedError() | |
if num_text_layers > 0: | |
self.use_text_finetune = True | |
textTransEncoderLayer = nn.TransformerEncoderLayer( | |
d_model=text_latent_dim, | |
nhead=text_num_heads, | |
dim_feedforward=text_ff_size, | |
dropout=dropout, | |
activation=activation) | |
self.textTransEncoder = nn.TransformerEncoder( | |
textTransEncoderLayer, | |
num_layers=num_text_layers) | |
else: | |
self.use_text_finetune = False | |
self.text_ln = nn.LayerNorm(text_latent_dim) | |
if self.use_text_proj: | |
self.text_proj = nn.Sequential( | |
nn.Linear(text_latent_dim, self.time_embed_dim) | |
) | |
def encode_text(self, text, clip_feat, device): | |
B = len(text) | |
text = clip.tokenize(text, truncate=True).to(device) | |
if clip_feat is None: | |
with torch.no_grad(): | |
x = self.clip.token_embedding(text).type(self.clip.dtype) # [batch_size, n_ctx, d_model] | |
x = x + self.clip.positional_embedding.type(self.clip.dtype) | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.clip.transformer(x) | |
x = self.clip.ln_final(x).type(self.clip.dtype) | |
else: | |
x = clip_feat.type(self.clip.dtype).to(device).permute(1, 0, 2) | |
# T, B, D | |
x = self.text_pre_proj(x) | |
xf_out = self.textTransEncoder(x) | |
xf_out = self.text_ln(xf_out) | |
if self.use_text_proj: | |
xf_proj = self.text_proj(xf_out[text.argmax(dim=-1), torch.arange(xf_out.shape[1])]) | |
# B, T, D | |
xf_out = xf_out.permute(1, 0, 2) | |
return xf_proj, xf_out | |
else: | |
xf_out = xf_out.permute(1, 0, 2) | |
return xf_out | |
def get_precompute_condition(self, **kwargs): | |
pass | |
def forward_train(self, h, src_mask, emb, **kwargs): | |
pass | |
def forward_test(self, h, src_mask, emb, **kwargs): | |
pass | |
def forward(self, motion, timesteps, motion_mask=None, **kwargs): | |
""" | |
motion: B, T, D | |
""" | |
B, T = motion.shape[0], motion.shape[1] | |
conditions = self.get_precompute_condition(device=motion.device, **kwargs) | |
if len(motion_mask.shape) == 2: | |
src_mask = motion_mask.clone().unsqueeze(-1) | |
else: | |
src_mask = motion_mask.clone() | |
if self.use_text_proj: | |
emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim)) + conditions['xf_proj'] | |
else: | |
emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim)) | |
# B, T, latent_dim | |
h = self.joint_embed(motion) | |
h = h + self.sequence_embedding.unsqueeze(0)[:, :T, :] | |
if self.training: | |
return self.forward_train(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions) | |
else: | |
return self.forward_test(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions) | |