ReMoDiffuse / mogen /models /transformers /diffusion_transformer.py
mingyuan's picture
initial commit
a0d91d3
from abc import ABCMeta, abstractmethod
from cv2 import norm
import torch
from torch import layer_norm, nn
import torch.nn.functional as F
from mmcv.runner import BaseModule
import numpy as np
from ..builder import SUBMODULES, build_attention
from .position_encoding import SinusoidalPositionalEncoding, LearnedPositionalEncoding
from ..utils.stylization_block import StylizationBlock
import math
import clip
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def set_requires_grad(nets, requires_grad=False):
"""Set requies_grad for all the networks.
Args:
nets (nn.Module | list[nn.Module]): A list of networks or a single
network.
requires_grad (bool): Whether the networks require gradients or not
"""
if not isinstance(nets, list):
nets = [nets]
for net in nets:
if net is not None:
for param in net.parameters():
param.requires_grad = requires_grad
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
class FFN(nn.Module):
def __init__(self, latent_dim, ffn_dim, dropout, time_embed_dim):
super().__init__()
self.linear1 = nn.Linear(latent_dim, ffn_dim)
self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim))
self.activation = nn.GELU()
self.dropout = nn.Dropout(dropout)
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
def forward(self, x, emb, **kwargs):
y = self.linear2(self.dropout(self.activation(self.linear1(x))))
y = x + self.proj_out(y, emb)
return y
class DecoderLayer(nn.Module):
def __init__(self,
sa_block_cfg=None,
ca_block_cfg=None,
ffn_cfg=None):
super().__init__()
self.sa_block = build_attention(sa_block_cfg)
self.ca_block = build_attention(ca_block_cfg)
self.ffn = FFN(**ffn_cfg)
def forward(self, **kwargs):
if self.sa_block is not None:
x = self.sa_block(**kwargs)
kwargs.update({'x': x})
if self.ca_block is not None:
x = self.ca_block(**kwargs)
kwargs.update({'x': x})
if self.ffn is not None:
x = self.ffn(**kwargs)
return x
class DiffusionTransformer(BaseModule, metaclass=ABCMeta):
def __init__(self,
input_feats,
max_seq_len=240,
latent_dim=512,
time_embed_dim=2048,
num_layers=8,
sa_block_cfg=None,
ca_block_cfg=None,
ffn_cfg=None,
text_encoder=None,
use_cache_for_text=False,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.input_feats = input_feats
self.max_seq_len = max_seq_len
self.latent_dim = latent_dim
self.num_layers = num_layers
self.time_embed_dim = time_embed_dim
self.sequence_embedding = nn.Parameter(torch.randn(max_seq_len, latent_dim))
self.use_cache_for_text = use_cache_for_text
if use_cache_for_text:
self.text_cache = {}
self.build_text_encoder(text_encoder)
# Input Embedding
self.joint_embed = nn.Linear(self.input_feats, self.latent_dim)
self.time_embed = nn.Sequential(
nn.Linear(self.latent_dim, self.time_embed_dim),
nn.SiLU(),
nn.Linear(self.time_embed_dim, self.time_embed_dim),
)
self.build_temporal_blocks(sa_block_cfg, ca_block_cfg, ffn_cfg)
# Output Module
self.out = zero_module(nn.Linear(self.latent_dim, self.input_feats))
def build_temporal_blocks(self, sa_block_cfg, ca_block_cfg, ffn_cfg):
self.temporal_decoder_blocks = nn.ModuleList()
for i in range(self.num_layers):
self.temporal_decoder_blocks.append(
DecoderLayer(
sa_block_cfg=sa_block_cfg,
ca_block_cfg=ca_block_cfg,
ffn_cfg=ffn_cfg
)
)
def build_text_encoder(self, text_encoder):
text_latent_dim = text_encoder['latent_dim']
num_text_layers = text_encoder.get('num_layers', 0)
text_ff_size = text_encoder.get('ff_size', 2048)
pretrained_model = text_encoder['pretrained_model']
text_num_heads = text_encoder.get('num_heads', 4)
dropout = text_encoder.get('dropout', 0)
activation = text_encoder.get('activation', 'gelu')
self.use_text_proj = text_encoder.get('use_text_proj', False)
if pretrained_model == 'clip':
self.clip, _ = clip.load('ViT-B/32', "cpu")
set_requires_grad(self.clip, False)
if text_latent_dim != 512:
self.text_pre_proj = nn.Linear(512, text_latent_dim)
else:
self.text_pre_proj = nn.Identity()
else:
raise NotImplementedError()
if num_text_layers > 0:
self.use_text_finetune = True
textTransEncoderLayer = nn.TransformerEncoderLayer(
d_model=text_latent_dim,
nhead=text_num_heads,
dim_feedforward=text_ff_size,
dropout=dropout,
activation=activation)
self.textTransEncoder = nn.TransformerEncoder(
textTransEncoderLayer,
num_layers=num_text_layers)
else:
self.use_text_finetune = False
self.text_ln = nn.LayerNorm(text_latent_dim)
if self.use_text_proj:
self.text_proj = nn.Sequential(
nn.Linear(text_latent_dim, self.time_embed_dim)
)
def encode_text(self, text, clip_feat, device):
B = len(text)
text = clip.tokenize(text, truncate=True).to(device)
if clip_feat is None:
with torch.no_grad():
x = self.clip.token_embedding(text).type(self.clip.dtype) # [batch_size, n_ctx, d_model]
x = x + self.clip.positional_embedding.type(self.clip.dtype)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.clip.transformer(x)
x = self.clip.ln_final(x).type(self.clip.dtype)
else:
x = clip_feat.type(self.clip.dtype).to(device).permute(1, 0, 2)
# T, B, D
x = self.text_pre_proj(x)
xf_out = self.textTransEncoder(x)
xf_out = self.text_ln(xf_out)
if self.use_text_proj:
xf_proj = self.text_proj(xf_out[text.argmax(dim=-1), torch.arange(xf_out.shape[1])])
# B, T, D
xf_out = xf_out.permute(1, 0, 2)
return xf_proj, xf_out
else:
xf_out = xf_out.permute(1, 0, 2)
return xf_out
@abstractmethod
def get_precompute_condition(self, **kwargs):
pass
@abstractmethod
def forward_train(self, h, src_mask, emb, **kwargs):
pass
@abstractmethod
def forward_test(self, h, src_mask, emb, **kwargs):
pass
def forward(self, motion, timesteps, motion_mask=None, **kwargs):
"""
motion: B, T, D
"""
B, T = motion.shape[0], motion.shape[1]
conditions = self.get_precompute_condition(device=motion.device, **kwargs)
if len(motion_mask.shape) == 2:
src_mask = motion_mask.clone().unsqueeze(-1)
else:
src_mask = motion_mask.clone()
if self.use_text_proj:
emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim)) + conditions['xf_proj']
else:
emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim))
# B, T, latent_dim
h = self.joint_embed(motion)
h = h + self.sequence_embedding.unsqueeze(0)[:, :T, :]
if self.training:
return self.forward_train(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions)
else:
return self.forward_test(h=h, src_mask=src_mask, emb=emb, timesteps=timesteps, **conditions)