Spaces:
Runtime error
Runtime error
File size: 1,171 Bytes
7e58b1c d18ab7c 7e58b1c f70f45f 42db233 f70f45f 42db233 f70f45f 7e58b1c d18ab7c f70f45f 85a1c33 d18ab7c 95fa60a f70f45f 3521ec1 e103523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import torch
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import gradio as gr
import spaces
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors" # Use the correct ckpt for your step setting!
# Load model.
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16)
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda"))
pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda")
# Ensure sampler uses "trailing" timesteps and "sample" prediction type.
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
# Load model.
@spaces.GPU
def generate(prompt, steps):
image = pipe(prompt, num_inference_steps=steps, guidance_scale=0).images[0]
return image
output_image = gr.Image(type="pil")
demo = gr.Interface(fn=generate, inputs=[gr.Text, gr.slider], outputs=output_image)
demo.launch() |