File size: 9,439 Bytes
e547b24
021dd02
e547b24
021dd02
 
 
 
 
e547b24
021dd02
 
 
 
 
 
 
 
 
 
 
 
e547b24
021dd02
 
 
 
 
40d7442
e547b24
021dd02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e547b24
021dd02
 
 
 
 
 
 
 
 
 
 
 
 
2ef175c
021dd02
 
 
 
753f6ea
b45a3eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237ef3
 
 
2ef175c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, lora_id=None, lora_scale=0.95, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    
    # for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
    #         prompt=prompt,
    #         guidance_scale=guidance_scale,
    #         num_inference_steps=num_inference_steps,
    #         width=width,
    #         height=height,
    #         generator=generator,
    #         output_type="pil",
    #         good_vae=good_vae,
    #     ):
    #         yield img, seed

    # Handle LoRA loading
    # Load LoRA weights and prepare joint_attention_kwargs
    if lora_id:
        pipe.unload_lora_weights()
        pipe.load_lora_weights(lora_id)
        joint_attention_kwargs = {"scale": lora_scale}
    else:
        joint_attention_kwargs = None
    
    try:
        # Call the custom pipeline function with the correct keyword argument
        for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,  # Assuming good_vae is defined elsewhere
            joint_attention_kwargs=joint_attention_kwargs,  # Fixed parameter name
        ):
            yield img, seed
    finally:
        # Unload LoRA weights if they were loaded
        if lora_id:
            pipe.unload_lora_weights()
    
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 [dev] LoRA
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1024,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=8,
                    value=1024,
                )
            
            with gr.Row():

                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )
  
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

            with gr.Row():
                lora_id = gr.Textbox(
                    label="LoRA Model ID (HuggingFace path)",
                    placeholder="username/lora-model",
                    max_lines=1
                )
                lora_scale = gr.Slider(
                    label="LoRA Scale",
                    minimum=0,
                    maximum=2,
                    step=0.01,
                    value=0.95,
                )
        
        gr.Examples(
            examples = examples,
            fn = infer,
            inputs = [prompt],
            outputs = [result, seed],
            cache_examples="lazy"
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,lora_id,lora_scale],
        outputs = [result, seed]
    )

demo.launch()
    



# with gr.Blocks(css=css) as app:
#     gr.HTML("<center><h1>FLUX.1-Dev with LoRA support</h1></center>")
#     with gr.Column(elem_id="col-container"):
#         with gr.Row():
#             with gr.Column():
#                 with gr.Row():
#                     text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=3, elem_id="prompt-text-input")
#                 with gr.Row():
#                     custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path (optional)", placeholder="multimodalart/vintage-ads-flux")
#                 with gr.Row():
#                     with gr.Accordion("Advanced Settings", open=False):
#                         lora_scale = gr.Slider(
#                             label="LoRA Scale",
#                             minimum=0,
#                             maximum=2,
#                             step=0.01,
#                             value=0.95,
#                         )
#                         with gr.Row():
#                             width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=8)
#                             height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=8)
#                         seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=4294967296, step=1)
#                         randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
#                         with gr.Row():
#                             steps = gr.Slider(label="Inference steps steps", value=28, minimum=1, maximum=100, step=1)
#                             cfg = gr.Slider(label="Guidance Scale", value=3.5, minimum=1, maximum=20, step=0.5)
#                         # method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])

#                 with gr.Row():
#                     # text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
#                     text_button = gr.Button("✨ Generate Image", variant='primary', elem_classes=["generate-btn"])
#             with gr.Column():
#                 with gr.Row():
#                     image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
#                 with gr.Row():
#                     seed_output = gr.Textbox(label="Seed Used", show_copy_button = True)
        
#         # gr.Markdown(article_text)
#         with gr.Column():
#             gr.Examples(
#                 examples = examples,
#                 inputs = [text_prompt],
#             )
#     gr.on(
#         triggers=[text_button.click, text_prompt.submit],
#         fn = infer,
#         inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], 
#         outputs=[image_output,seed_output, seed]
#     )
        
#         # text_button.click(query, inputs=[custom_lora, text_prompt, steps, cfg, randomize_seed, seed, width, height], outputs=[image_output,seed_output, seed])
#         # text_button.click(infer, inputs=[text_prompt, seed, randomize_seed, width, height, cfg, steps, custom_lora, lora_scale], outputs=[image_output,seed_output, seed])

# app.launch(share=True)