File size: 17,610 Bytes
79b8e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cdbdc2
79b8e3b
 
 
6cdbdc2
79b8e3b
6cdbdc2
79b8e3b
6cdbdc2
79b8e3b
6cdbdc2
79b8e3b
 
 
 
 
 
 
 
 
6cdbdc2
79b8e3b
6cdbdc2
79b8e3b
 
 
6cdbdc2
ebd9098
79b8e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8267210
79b8e3b
 
8267210
79b8e3b
 
 
 
 
 
 
 
 
8267210
79b8e3b
 
8267210
79b8e3b
 
 
422754d
79b8e3b
 
28fc30b
79b8e3b
 
422754d
79b8e3b
 
28fc30b
79b8e3b
 
 
 
 
a1941ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47b1f89
 
41b209f
 
 
a1941ae
41b209f
 
 
 
a1941ae
41b209f
47b1f89
6cdbdc2
47b1f89
41b209f
a1941ae
41b209f
85e3933
47b1f89
a1941ae
79b8e3b
0d55049
a1941ae
0d55049
d54a2bd
1d916f0
 
 
 
 
 
 
0d55049
41b209f
6dda0fd
 
 
 
 
 
d54a2bd
41b209f
d54a2bd
47b1f89
d54a2bd
41b209f
d54a2bd
41b209f
 
 
 
d54a2bd
 
47b1f89
41b209f
d54a2bd
41b209f
0f668a0
d54a2bd
41b209f
d54a2bd
 
 
41b209f
d54a2bd
 
 
 
ebd9098
41b209f
d54a2bd
85e3933
d54a2bd
41b209f
d54a2bd
 
a1941ae
41b209f
d54a2bd
41b209f
a1941ae
47b1f89
d54a2bd
48aa5eb
a1941ae
47b1f89
 
 
 
 
 
 
 
 
48aa5eb
47b1f89
 
 
 
 
 
 
 
 
 
a1941ae
85e3933
47b1f89
a1941ae
 
47b1f89
 
 
 
 
 
 
 
 
a1941ae
 
47b1f89
 
41b209f
47b1f89
2e6775a
 
 
41b209f
2e6775a
 
 
47b1f89
2e6775a
 
c02e3db
47b1f89
2e6775a
 
a1941ae
2e6775a
 
 
 
 
a1941ae
2e6775a
 
 
47b1f89
 
a1941ae
 
 
 
 
41b209f
a1941ae
 
 
47b1f89
 
a1941ae
47b1f89
a1941ae
cde10e2
 
 
 
47b1f89
 
cde10e2
 
 
a1941ae
41b209f
 
 
47b1f89
41b209f
bcdfde6
47b1f89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
# # import feedparser
# # import urllib.parse
# # import yaml
# # import gradio as gr
# # from smolagents import CodeAgent, HfApiModel, tool
# # from tools.final_answer import FinalAnswerTool

# # @tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 3) -> list:
# #     """Fetches the latest research papers from arXiv based on provided keywords.

# #     Args:
# #         keywords: A list of keywords to search for relevant papers.
# #         num_results: The number of papers to fetch (default is 3).

# #     Returns:
# #         A list of dictionaries containing:
# #             - "title": The title of the research paper.
# #             - "authors": The authors of the paper.
# #             - "year": The publication year.
# #             - "abstract": A summary of the research paper.
# #             - "link": A direct link to the paper on arXiv.
# #     """
# #     try:
# #         print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")  # Debug input
        
# #         #Properly format query with +AND+ for multiple keywords
# #         query = "+AND+".join([f"all:{kw}" for kw in keywords])  
# #         query_encoded = urllib.parse.quote(query)  # Encode spaces and special characters
        
# #         url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results={num_results}&sortBy=submittedDate&sortOrder=descending"
        
# #         print(f"DEBUG: Query URL - {url}")  # Debug URL
        
# #         feed = feedparser.parse(url)

# #         papers = []
# #         for entry in feed.entries:
# #             papers.append({
# #                 "title": entry.title,
# #                 "authors": ", ".join(author.name for author in entry.authors),
# #                 "year": entry.published[:4],  # Extract year
# #                 "abstract": entry.summary,
# #                 "link": entry.link
# #             })

# #         return papers

# #     except Exception as e:
# #         print(f"ERROR: {str(e)}")  # Debug errors
# #         return [f"Error fetching research papers: {str(e)}"]


# #"""------Applied BM25 search for paper retrival------"""
# # from rank_bm25 import BM25Okapi
# # import nltk

# # import os
# # import shutil


# # nltk_data_path = os.path.join(nltk.data.path[0], "tokenizers", "punkt")
# # if os.path.exists(nltk_data_path):
# #     shutil.rmtree(nltk_data_path)  # Remove corrupted version

# # print("Removed old NLTK 'punkt' data. Reinstalling...")

# # # Step 2: Download the correct 'punkt' tokenizer
# # nltk.download("punkt_tab")

# # print("Successfully installed 'punkt'!")


# # @tool  # Register the function properly as a SmolAgents tool
# # def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
# #     """Fetches and ranks arXiv papers using BM25 keyword relevance.

# #     Args:
# #         keywords: List of keywords for search.
# #         num_results: Number of results to return.

# #     Returns:
# #         List of the most relevant papers based on BM25 ranking.
# #     """
# #     try:
# #         print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")

# #         # Use a general keyword search (without `ti:` and `abs:`)
# #         query = "+AND+".join([f"all:{kw}" for kw in keywords])  
# #         query_encoded = urllib.parse.quote(query)
# #         url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"

# #         print(f"DEBUG: Query URL - {url}")

# #         feed = feedparser.parse(url)
# #         papers = []

# #         # Extract papers from arXiv
# #         for entry in feed.entries:
# #             papers.append({
# #                 "title": entry.title,
# #                 "authors": ", ".join(author.name for author in entry.authors),
# #                 "year": entry.published[:4],
# #                 "abstract": entry.summary,
# #                 "link": entry.link
# #             })

# #         if not papers:
# #             return [{"error": "No results found. Try different keywords."}]

# #         # Apply BM25 ranking
# #         tokenized_corpus = [nltk.word_tokenize(paper["title"].lower() + " " + paper["abstract"].lower()) for paper in papers]
# #         bm25 = BM25Okapi(tokenized_corpus)

# #         tokenized_query = nltk.word_tokenize(" ".join(keywords).lower())
# #         scores = bm25.get_scores(tokenized_query)

# #         # Sort papers based on BM25 score
# #         ranked_papers = sorted(zip(papers, scores), key=lambda x: x[1], reverse=True)

# #         # Return the most relevant ones
# #         return [paper[0] for paper in ranked_papers[:num_results]]

# #     except Exception as e:
# #         print(f"ERROR: {str(e)}")
# #         return [{"error": f"Error fetching research papers: {str(e)}"}]


# """------Applied TF-IDF for better semantic search------"""
# import feedparser
# import urllib.parse
# import yaml
# from tools.final_answer import FinalAnswerTool
# import numpy as np
# from sklearn.feature_extraction.text import TfidfVectorizer
# from sklearn.metrics.pairwise import cosine_similarity
# import gradio as gr
# from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
# import nltk

# import datetime
# import requests
# import pytz
# from tools.final_answer import FinalAnswerTool

# from Gradio_UI import GradioUI

# nltk.download("stopwords")
# from nltk.corpus import stopwords

# @tool  # ✅ Register the function properly as a SmolAgents tool
# def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
#     """Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.

#     Args:
#         keywords: List of keywords for search.
#         num_results: Number of results to return.

#     Returns:
#         List of the most relevant papers based on TF-IDF ranking.
#     """
#     try:
#         print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")

#         # Use a general keyword search
#         query = "+AND+".join([f"all:{kw}" for kw in keywords])  
#         query_encoded = urllib.parse.quote(query)
#         url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"

#         print(f"DEBUG: Query URL - {url}")

#         feed = feedparser.parse(url)
#         papers = []

#         # Extract papers from arXiv
#         for entry in feed.entries:
#             papers.append({
#                 "title": entry.title,
#                 "authors": ", ".join(author.name for author in entry.authors),
#                 "year": entry.published[:4],
#                 "abstract": entry.summary,
#                 "link": entry.link
#             })

#         if not papers:
#             return [{"error": "No results found. Try different keywords."}]

#         # Prepare TF-IDF Vectorization
#         corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
#         vectorizer = TfidfVectorizer(stop_words=stopwords.words('english'))  # Remove stopwords
#         tfidf_matrix = vectorizer.fit_transform(corpus)

#         # Transform Query into TF-IDF Vector
#         query_str = " ".join(keywords)
#         query_vec = vectorizer.transform([query_str])

#         #Compute Cosine Similarity
#         similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()

#         #Sort papers based on similarity score
#         ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)

#         # Return the most relevant papers
#         return [paper[0] for paper in ranked_papers[:num_results]]

#     except Exception as e:
#         print(f"ERROR: {str(e)}")
#         return [{"error": f"Error fetching research papers: {str(e)}"}]
# @tool
# def get_current_time_in_timezone(timezone: str) -> str:
#     """A tool that fetches the current local time in a specified timezone.
#     Args:
#         timezone: A string representing a valid timezone (e.g., 'America/New_York').
#     """
#     try:
#         # Create timezone object
#         tz = pytz.timezone(timezone)
#         # Get current time in that timezone
#         local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
#         return f"The current local time in {timezone} is: {local_time}"
#     except Exception as e:
#         return f"Error fetching time for timezone '{timezone}': {str(e)}"


# final_answer = FinalAnswerTool()


# # AI Model
# model = HfApiModel(
#     max_tokens=2096,
#     temperature=0.5,
#     model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
#     custom_role_conversions=None,
# )

# # Import tool from Hub
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)


# # Load prompt templates
# with open("prompts.yaml", 'r') as stream:
#     prompt_templates = yaml.safe_load(stream)

# # Create the AI Agent
# agent = CodeAgent(
#     model=model,
#     tools=[final_answer,fetch_latest_arxiv_papers],  # Add your tools here 
#     max_steps=6,
#     verbosity_level=1,
#     grammar=None,
#     planning_interval=None,
#     name="ScholarAgent",
#     description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
#     prompt_templates=prompt_templates
# )



# #Search Papers
# def search_papers(user_input):
#     keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()]  # Ensure valid keywords
#     print(f"DEBUG: Received input keywords - {keywords}")  # Debug user input
    
#     if not keywords:
#         print("DEBUG: No valid keywords provided.")
#         return "Error: Please enter at least one valid keyword."
    
#     results = fetch_latest_arxiv_papers(keywords, num_results=3)  # Fetch 3 results
#     print(f"DEBUG: Results received - {results}")  # Debug function output

#     # Check if the API returned an error
#     if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
#         return results[0]["error"]  # Return the error message directly

#     # Format results only if valid papers exist
#     if isinstance(results, list) and results and isinstance(results[0], dict):
#         formatted_results = "\n\n".join([
#             f"---\n\n"
#             f"📌 **Title:** {paper['title']}\n\n"
#             f"👨‍🔬 **Authors:** {paper['authors']}\n\n"
#             f"📅 **Year:** {paper['year']}\n\n"
#             f"📖 **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
#             f"[🔗 Read Full Paper]({paper['link']})\n\n"
#             for paper in results
#         ])
#         return formatted_results

#     print("DEBUG: No results found.")
#     return "No results found. Try different keywords."



# # Create Gradio UI
# with gr.Blocks() as demo:
#     gr.Markdown("# ScholarAgent")
#     keyword_input = gr.Textbox(label="Enter keywords(comma-separated) or even full sentences ", placeholder="e.g., deep learning, reinforcement learning or NLP in finance or Deep learning in Medicine")
#     output_display = gr.Markdown()
#     search_button = gr.Button("Search")

#     search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])

#     print("DEBUG: Gradio UI is running. Waiting for user input...")

# # Launch Gradio App
# demo.launch()

"""------Enhanced ScholarAgent with Fixes and Features-----"""
import feedparser
import urllib.parse
import yaml
import requests
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import gradio as gr
from smolagents import CodeAgent, HfApiModel, tool
import nltk
from transformers import pipeline

# ✅ Ensure necessary NLTK data is downloaded
nltk.download("stopwords")
nltk.download("punkt")
from nltk.corpus import stopwords

# ✅ GPT Summarization Pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")

@tool
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
    """
    Fetches and ranks arXiv papers using optimized TF-IDF and Cosine Similarity.

    Args:
        keywords: List of keywords for search.
        num_results: Number of results to return.

    Returns:
        List of the most relevant papers based on TF-IDF ranking.
    """
    try:
        # ✅ Correct URL encoding for spaces and special characters
        query = "+AND+".join([f"all:{kw}" for kw in keywords])
        query_encoded = urllib.parse.quote_plus(query)  # ✅ FIXED: Correct encoding
        
        url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=5&sortBy=submittedDate&sortOrder=descending"
        print(f"DEBUG: Query URL - {url}")  # ✅ Debugging

        feed = feedparser.parse(url)
        print(f"DEBUG: API Response - {feed.entries}")

        papers = []
        for entry in feed.entries:
            papers.append({
                "title": entry.title,
                "authors": ", ".join(author.name for author in entry.authors),
                "year": entry.published[:4],
                "abstract": entry.summary,
                "link": entry.link
            })

        if not papers:
            print("DEBUG: No results from ArXiv API")
            return [{"error": "No results found. Try different keywords."}]

        # ✅ Debug Corpus before TF-IDF
        corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
        print(f"DEBUG: Corpus - {corpus}")

        vectorizer = TfidfVectorizer(stop_words=stopwords.words('english'), max_features=2000)  
        tfidf_matrix = vectorizer.fit_transform(corpus)
        print(f"DEBUG: TF-IDF Matrix Shape - {tfidf_matrix.shape}")

        query_vec = vectorizer.transform([" ".join(keywords)])
        print(f"DEBUG: Query Vector Shape - {query_vec.shape}")

        similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
        print(f"DEBUG: Similarity Scores - {similarity_scores}")

        # ✅ Rank papers by similarity score
        ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
        
        return [paper[0] for paper in ranked_papers[:num_results]]
    
    except Exception as e:
        print(f"ERROR: {str(e)}")
        return [{"error": f"Error fetching research papers: {str(e)}"}]



@tool
def get_citation_count(paper_title: str) -> int:
    """
    Fetches citation count from Semantic Scholar API.

    Args:
        paper_title (str): Title of the research paper.

    Returns:
        int: Citation count (default 0 if not found).
    """
    try:
        base_url = "https://api.semanticscholar.org/graph/v1/paper/search"
        params = {"query": paper_title, "fields": "citationCount"}
        response = requests.get(base_url, params=params).json()

        if "data" in response and response["data"]:
            return response["data"][0].get("citationCount", 0)
        return 0  # Default to 0 if no data found

    except Exception as e:
        print(f"ERROR fetching citation count: {e}")
        return 0


@tool
def rank_papers_by_citations(papers: list) -> list:
    """
    Ranks papers based on citation count and TF-IDF similarity.

    Args:
        papers (list): List of research papers.

    Returns:
        list: Papers sorted by citation count and TF-IDF score.
    """
    for paper in papers:
        paper["citations"] = get_citation_count(paper["title"])
    return sorted(papers, key=lambda x: (x["citations"], x.get("tfidf_score", 0)), reverse=True)


# ✅ AI Model
model = HfApiModel(
    max_tokens=2096,
    temperature=0.5,
    model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
    custom_role_conversions=None,
)

# ✅ Load prompt templates
with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)

# ✅ Create the AI Agent
agent = CodeAgent(
    model=model,
    tools=[fetch_latest_arxiv_papers, get_citation_count, rank_papers_by_citations],
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name="ScholarAgent",
    description="An AI agent that fetches and ranks the latest research papers based on citations and relevance.",
    prompt_templates=prompt_templates
)


# ✅ Gradio UI
with gr.Blocks() as demo:
    gr.Markdown("# ScholarAgent")
    keyword_input = gr.Textbox(label="Enter keywords or full sentences", placeholder="e.g., deep learning, reinforcement learning")
    output_display = gr.Markdown()
    search_button = gr.Button("Search")

    def search_papers(user_input):
        keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()]
        results = fetch_latest_arxiv_papers(keywords, num_results=3)

        if isinstance(results, list) and results and "error" in results[0]:
            return results[0]["error"]

        return "\n\n".join([
            f"---\n\n"
            f"📌 **Title:** {paper['title']}\n\n"
            f"👨‍🔬 **Authors:** {paper['authors']}\n\n"
            f"📅 **Year:** {paper['year']}\n\n"
            f"📖 **Summary:** {paper.get('summary', 'No summary available')[:500]}... *(truncated)*\n\n"
            f"🔢 **Citations:** {paper.get('citations', 0)}\n\n"
            f"[🔗 Read Full Paper]({paper['link']})\n\n"
            for paper in results
        ])
    
    search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
    print("DEBUG: Gradio UI is running. Waiting for user input...")

# ✅ Launch Gradio App
demo.launch()