File size: 8,181 Bytes
5c263d5
 
 
 
 
 
 
 
 
 
 
 
7bac21a
5c263d5
 
 
7bac21a
 
 
5c263d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef773e
 
 
5c263d5
 
fef773e
 
 
 
 
 
 
 
 
5c263d5
 
fef773e
 
 
 
 
 
 
 
5c263d5
fef773e
5c263d5
 
 
 
 
 
 
7bac21a
 
fef773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bac21a
 
 
fef773e
7bac21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef773e
7bac21a
 
 
5c263d5
7bac21a
 
5c263d5
 
 
fef773e
7bac21a
fef773e
7bac21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef773e
7bac21a
 
 
fef773e
7bac21a
 
fef773e
 
7bac21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fef773e
 
7bac21a
 
 
 
 
 
fef773e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bac21a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# -------------------------------------------------------------------
# This source file is available under the terms of the
# Pimcore Open Core License (POCL)
# Full copyright and license information is available in
# LICENSE.md which is distributed with this source code.
#
#  @copyright  Copyright (c) Pimcore GmbH (https://www.pimcore.com)
#  @license    Pimcore Open Core License (POCL)
# -------------------------------------------------------------------

import torch

from fastapi import FastAPI, Path, Request
import logging
import sys

from .translation_task import TranslationTaskService
from .classification import ClassificationTaskService
from .text_to_image import TextToImageTaskService

app = FastAPI(
    title="Pimcore Local Inference Service",
    description="This services allows HF inference provider compatible inference to models which are not available at HF inference providers.",
    version="1.0.0"
)

logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)


class StreamToLogger(object):
    def __init__(self, logger, log_level):
        self.logger = logger
        self.log_level = log_level
        self.linebuf = ''

    def write(self, buf):
        for line in buf.rstrip().splitlines():
            self.logger.log(self.log_level, line.rstrip())

    def flush(self):
        pass

sys.stdout = StreamToLogger(logger, logging.INFO)
sys.stderr = StreamToLogger(logger, logging.ERROR)

@app.get("/gpu_check")
async def gpu_check():
    """ Check if a GPU is available """

    gpu = 'GPU not available'
    if torch.cuda.is_available():
        gpu = 'GPU is available'
        print("GPU is available")
    else:
        print("GPU is not available")

    return {'success': True, 'gpu': gpu}


# =========================
# Translation Task
# =========================
@app.post(
    "/translation/{model_name:path}/", 
    openapi_extra={
        "requestBody": {
            "content": {
                "application/json": {
                    "example": {
                        "inputs": "Hello, world! foo bar",
                        "parameters": {"repetition_penalty": 1.6}
                    }
                }
            }
        }
    }        
)
async def translate(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the translation model (e.g. Helsinki-NLP/opus-mt-en-de)",
        example="Helsinki-NLP/opus-mt-en-de"
    )
    ):
    """
    Execute translation tasks.

    Returns:
        list: The translation result(s) as returned by the pipeline.
    """

    translationTaskService = TranslationTaskService(logger)
    return await translationTaskService.translate(request, model_name)


# =========================
# Zero-Shot Image Classification Task
# =========================
@app.post(
    "/zero-shot-image-classification/{model_name:path}/",
    openapi_extra={
        "requestBody": {
            "content": {
                "application/json": {
                    "example": {
                        "inputs": "base64_encoded_image_string",
                        "parameters": {"candidate_labels": "green, yellow, blue, white, silver"}
                    }
                }
            }
        }        
    }
)
async def zero_shot_image_classification(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the zero-shot classification model (e.g., openai/clip-vit-large-patch14-336)",
        example="openai/clip-vit-large-patch14-336"
    )
    ):
    """
    Execute zero-shot image classification tasks.

    Returns:
        list: The classification result(s) as returned by the pipeline.
    """

    zeroShotTask = ClassificationTaskService(logger, 'zero-shot-image-classification')
    return await zeroShotTask.classify(request, model_name)


# =========================
# Image Classification Task
# =========================
@app.post(
    "/image-classification/{model_name:path}/",
    openapi_extra={
        "requestBody": {
            "content": {
                "application/json": {
                    "example": {
                        "inputs": "base64_encoded_image_string"
                    }
                }
            }
        }        
    }
)
async def image_classification(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the image classification model (e.g., pimcore/car-countries-classification)",
        example="pimcore/car-countries-classification"
    )
    ):
    """
    Execute image classification tasks.

    Returns:
        list: The classification result(s) as returned by the pipeline.
    """

    imageTask = ClassificationTaskService(logger, 'image-classification')
    return await imageTask.classify(request, model_name)



# =========================
# Zero-Shot Text Classification Task
# =========================
@app.post(
    "/zero-shot-text-classification/{model_name:path}/",
    openapi_extra={
        "requestBody": {
            "content": {
                "application/json": {
                    "example": {
                        "inputs": "text to classify",
                        "parameters": {"candidate_labels": "green, yellow, blue, white, silver"}
                    }
                }
            }
        }        
    }
)
async def zero_shot_text_classification(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the zero-shot text classification model (e.g., facebook/bart-large-mnli)",
        example="facebook/bart-large-mnli"
    )
    ):
    """
    Execute zero-shot text classification tasks.

    Returns:
        list: The classification result(s) as returned by the pipeline.
    """

    zeroShotTask = ClassificationTaskService(logger, 'zero-shot-classification')
    return await zeroShotTask.classify(request, model_name)


# =========================
# Text Classification Task
# =========================
@app.post(
    "/text-classification/{model_name:path}/",
    openapi_extra={
        "requestBody": {
            "content": {
                "application/json": {
                    "example": {
                        "inputs": "text to classify"
                    }
                }
            }
        }        
    }
)
async def text_classification(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the text classification model (e.g., pimcore/car-class-classification)",
        example="pimcore/car-class-classification"
    )
    ):
    """
    Execute text classification tasks.

    Returns:
        list: The classification result(s) as returned by the pipeline.
    """

    textTask = ClassificationTaskService(logger, 'text-classification')
    return await textTask.classify(request, model_name)





# =========================
# Image to Text Task
# =========================
@app.post(
    "/image-to-text/{model_name:path}/",
    openapi_extra={
        "requestBody": {
            "content": {
                "multipart/form-data": {
                    "schema": {
                        "type": "object",
                        "properties": {
                            "image": {
                                "type": "string",
                                "format": "binary",
                                "description": "Image file to upload"
                            }
                        },
                        "required": ["image"]
                    }
                }
            }
        }
    }
)
async def image_to_text(
    request: Request,
    model_name: str = Path(
        ...,
        description="The name of the image-to-text (e.g., Salesforce/blip-image-captioning-base)",
        example="Salesforce/blip-image-captioning-base"
    )
    ):
    """
    Execute image-to-text tasks.

    Returns:
        list: The generated text as returned by the pipeline.
    """

    imageToTextTask = TextToImageTaskService(logger)
    return await imageToTextTask.extract(request, model_name)