Spaces:
Sleeping
Sleeping
File size: 12,059 Bytes
45d10c4 a00beed d22f052 79b97e2 45d10c4 d22f052 edc836f 45d10c4 79b97e2 45d10c4 79b97e2 e81407b 9df8406 dd9b08a a00beed d22f052 dd9b08a 350b1a0 a00beed d22f052 a00beed 75ba191 b472976 a00beed 45d10c4 79b97e2 f45e494 79b97e2 dd9b08a 45d10c4 dd9b08a 45d10c4 dd9b08a 45d10c4 dd9b08a 45d10c4 dd9b08a 45d10c4 dd9b08a 45d10c4 f45e494 45d10c4 9df8406 a00beed 9df8406 dd9b08a 9df8406 6f614b5 9df8406 d22f052 9df8406 6f614b5 45d10c4 350b1a0 45d10c4 ff03afa 45d10c4 350b1a0 1c49ee1 79b97e2 45d10c4 9fc992f 8fe6e3e 350b1a0 8fe6e3e 350b1a0 1c49ee1 9fc992f 2333c59 9fc992f 8fe6e3e 9fc992f 8fe6e3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import nltk
import torch.nn.functional as F
import nltk
from scipy.special import softmax
import yaml
from utils import *
import joblib
from optimum.bettertransformer import BetterTransformer
import gc
from cleantext import clean
import gradio as gr
from tqdm.auto import tqdm
from transformers import pipeline
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import nltk
from nltk.tokenize import sent_tokenize
from optimum.pipelines import pipeline
with open("config.yaml", "r") as file:
params = yaml.safe_load(file)
nltk.download("punkt")
nltk.download("stopwords")
device_needed = "cuda" if torch.cuda.is_available() else "cpu"
device = "cuda" if torch.cuda.is_available() else "cpu"
text_bc_model_path = params["TEXT_BC_MODEL_PATH"]
text_mc_model_path = params["TEXT_MC_MODEL_PATH"]
text_quillbot_model_path = params["TEXT_QUILLBOT_MODEL_PATH"]
quillbot_labels = params["QUILLBOT_LABELS"]
mc_label_map = params["MC_OUTPUT_LABELS"]
mc_token_size = int(params["MC_TOKEN_SIZE"])
bc_token_size = int(params["BC_TOKEN_SIZE"])
bias_checker_model_name = params['BIAS_CHECKER_MODEL_PATH']
bias_corrector_model_name = params['BIAS_CORRECTOR_MODEL_PATH']
text_bc_tokenizer = AutoTokenizer.from_pretrained(text_bc_model_path)
text_bc_model = AutoModelForSequenceClassification.from_pretrained(
text_bc_model_path
).to(device)
text_mc_tokenizer = AutoTokenizer.from_pretrained(text_mc_model_path)
text_mc_model = AutoModelForSequenceClassification.from_pretrained(
text_mc_model_path
).to(device)
quillbot_tokenizer = AutoTokenizer.from_pretrained(text_quillbot_model_path)
quillbot_model = AutoModelForSequenceClassification.from_pretrained(
text_quillbot_model_path
).to(device)
# proxy models for explainability
mini_bc_model_name = "polygraf-ai/bc-model"
bc_tokenizer_mini = AutoTokenizer.from_pretrained(mini_bc_model_name)
bc_model_mini = AutoModelForSequenceClassification.from_pretrained(
mini_bc_model_name
).to(device_needed)
mini_humanizer_model_name = "polygraf-ai/humanizer-model"
humanizer_tokenizer_mini = AutoTokenizer.from_pretrained(
mini_humanizer_model_name
)
humanizer_model_mini = AutoModelForSequenceClassification.from_pretrained(
mini_humanizer_model_name
).to(device_needed)
bc_model_mini = BetterTransformer.transform(bc_model_mini)
humanizer_model_mini = BetterTransformer.transform(humanizer_model_mini)
text_bc_model = BetterTransformer.transform(text_bc_model)
text_mc_model = BetterTransformer.transform(text_mc_model)
quillbot_model = BetterTransformer.transform(quillbot_model)
bias_model_checker = AutoModelForSequenceClassification.from_pretrained(bias_checker_model_name)
tokenizer = AutoTokenizer.from_pretrained(bias_checker_model_name)
bias_model_checker = BetterTransformer.transform(bias_model_checker, keep_original_model=False)
bias_checker = pipeline(
"text-classification",
model=bias_checker_model_name,
tokenizer=bias_checker_model_name,
)
gc.collect()
bias_corrector = pipeline( "text2text-generation", model=bias_corrector_model_name, accelerator="ort")
# model score calibration
iso_reg = joblib.load("isotonic_regression_model.joblib")
def split_text(text: str) -> list:
sentences = sent_tokenize(text)
return [[sentence] for sentence in sentences]
def correct_text(text: str, bias_checker, bias_corrector, separator: str = " ") -> tuple:
sentence_batches = split_text(text)
corrected_text = []
corrections = []
for batch in tqdm(sentence_batches, total=len(sentence_batches), desc="correcting text.."):
raw_text = " ".join(batch)
results = bias_checker(raw_text)
if results[0]["label"] != "LABEL_1" or (results[0]["label"] == "LABEL_1" and results[0]["score"] < 0.9):
corrected_batch = bias_corrector(raw_text)
corrected_version = corrected_batch[0]["generated_text"]
corrected_text.append(corrected_version)
corrections.append((raw_text, corrected_version))
else:
corrected_text.append(raw_text)
corrected_text = separator.join(corrected_text)
return corrected_text, corrections
def update(text: str):
text = clean(text, lower=False)
corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
corrections_display = "".join([f"{corr}" for orig, corr in corrections])
if corrections_display == "":
corrections_display = text
return corrections_display
def update_main(text: str):
text = clean(text, lower=False)
corrected_text, corrections = correct_text(text, bias_checker, bias_corrector)
corrections_display = "\n\n".join([f"Original: {orig}\nCorrected: {corr}" for orig, corr in corrections])
return corrected_text, corrections_display
def split_text(text: str) -> list:
sentences = sent_tokenize(text)
return [[sentence] for sentence in sentences]
def get_token_length(tokenizer, sentence):
return len(tokenizer.tokenize(sentence))
def split_text_allow_complete_sentences_nltk(text, type_det="bc"):
sentences = sent_tokenize(text)
chunks = []
current_chunk = []
current_length = 0
if type_det == "bc":
tokenizer = text_bc_tokenizer
max_tokens = bc_token_size
elif type_det == "mc":
tokenizer = text_mc_tokenizer
max_tokens = mc_token_size
elif type_det == "quillbot":
tokenizer = quillbot_tokenizer
max_tokens = 256
def add_sentence_to_chunk(sentence):
nonlocal current_chunk, current_length
sentence_length = get_token_length(tokenizer, sentence)
if current_length + sentence_length > max_tokens:
chunks.append((current_chunk, current_length))
current_chunk = []
current_length = 0
current_chunk.append(sentence)
current_length += sentence_length
for sentence in sentences:
add_sentence_to_chunk(sentence)
if current_chunk:
chunks.append((current_chunk, current_length))
adjusted_chunks = []
while chunks:
chunk = chunks.pop(0)
if len(chunks) > 0 and chunk[1] < max_tokens / 2:
next_chunk = chunks.pop(0)
combined_length = chunk[1] + next_chunk[1]
if combined_length <= max_tokens:
adjusted_chunks.append((chunk[0] + next_chunk[0], combined_length))
else:
adjusted_chunks.append(chunk)
chunks.insert(0, next_chunk)
else:
adjusted_chunks.append(chunk)
result_chunks = [" ".join(chunk[0]) for chunk in adjusted_chunks]
return result_chunks
def predict_quillbot(text, bias_buster_selected):
if bias_buster_selected:
text = update(text)
with torch.no_grad():
quillbot_model.eval()
tokenized_text = quillbot_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=256,
return_tensors="pt",
).to(device)
output = quillbot_model(**tokenized_text)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
q_score = {
"Humanized": output_norm[1].item(),
"Original": output_norm[0].item(),
}
return q_score
def predict_for_explainanility(text, model_type=None):
if model_type == "quillbot":
cleaning = False
max_length = 256
model = humanizer_model_mini
tokenizer = humanizer_tokenizer_mini
elif model_type == "bc":
cleaning = True
max_length = bc_token_size
model = bc_model_mini
tokenizer = bc_tokenizer_mini
else:
raise ValueError("Invalid model type")
with torch.no_grad():
if cleaning:
text = [remove_special_characters(t) for t in text]
tokenized_text = tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=max_length,
).to(device_needed)
outputs = model(**tokenized_text)
tensor_logits = outputs[0]
probas = F.softmax(tensor_logits).detach().cpu().numpy()
return probas
def predict_bc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_bc_tokenizer(
text,
padding="max_length",
truncation=True,
max_length=bc_token_size,
return_tensors="pt",
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_mc(model, tokenizer, text):
with torch.no_grad():
model.eval()
tokens = text_mc_tokenizer(
text,
padding="max_length",
truncation=True,
return_tensors="pt",
max_length=mc_token_size,
).to(device)
output = model(**tokens)
output_norm = softmax(output.logits.detach().cpu().numpy(), 1)[0]
return output_norm
def predict_bc_scores(input):
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
print(
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
)
# isotonic regression calibration
ai_score = iso_reg.predict([bc_score_list[1]])[0]
human_score = 1 - ai_score
bc_score = {"AI": ai_score, "HUMAN": human_score}
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
print(f"Input Text: {cleaned_text_bc}")
return bc_score
def predict_mc_scores(input):
# BC SCORE
bc_scores = []
samples_len_bc = len(
split_text_allow_complete_sentences_nltk(input, type_det="bc")
)
segments_bc = split_text_allow_complete_sentences_nltk(input, type_det="bc")
for i in range(samples_len_bc):
cleaned_text_bc = remove_special_characters(segments_bc[i])
bc_score = predict_bc(text_bc_model, text_bc_tokenizer, cleaned_text_bc)
bc_scores.append(bc_score)
bc_scores_array = np.array(bc_scores)
average_bc_scores = np.mean(bc_scores_array, axis=0)
bc_score_list = average_bc_scores.tolist()
print(
f"Original BC scores: AI: {bc_score_list[1]}, HUMAN: {bc_score_list[0]}"
)
# isotonic regression calibration
ai_score = iso_reg.predict([bc_score_list[1]])[0]
human_score = 1 - ai_score
bc_score = {"AI": ai_score, "HUMAN": human_score}
print(f"Calibration BC scores: AI: {ai_score}, HUMAN: {human_score}")
mc_scores = []
segments_mc = split_text_allow_complete_sentences_nltk(
input, type_det="mc"
)
samples_len_mc = len(
split_text_allow_complete_sentences_nltk(input, type_det="mc")
)
for i in range(samples_len_mc):
cleaned_text_mc = remove_special_characters(segments_mc[i])
mc_score = predict_mc(
text_mc_model, text_mc_tokenizer, cleaned_text_mc
)
mc_scores.append(mc_score)
mc_scores_array = np.array(mc_scores)
average_mc_scores = np.mean(mc_scores_array, axis=0)
mc_score_list = average_mc_scores.tolist()
mc_score = {}
for score, label in zip(mc_score_list, mc_label_map):
mc_score[label.upper()] = score
sum_prob = 1 - bc_score["HUMAN"]
for key, value in mc_score.items():
mc_score[key] = value * sum_prob
print("MC Score:", mc_score)
if sum_prob < 0.01:
mc_score = {}
return mc_score
|