Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,473 Bytes
ed275c9 3f6a788 5d63d59 ed275c9 5d63d59 fc95e60 3f6a788 ed275c9 7342b9f 36ebfe1 7342b9f c8cd2f3 7342b9f a5258c3 3f6a788 91cda81 ed275c9 3f6a788 ed275c9 9522057 3f6a788 21aef35 239e8eb f9c1d72 239e8eb 3f6a788 239e8eb 3f6a788 fc95e60 3f6a788 fc95e60 3f6a788 5d63d59 fc95e60 3f6a788 5d63d59 3f6a788 5d63d59 fc95e60 5633a75 fe53594 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 7342b9f ed275c9 0de5083 5d63d59 ed275c9 5d63d59 df7c39c 4f29dc5 df7c39c 78742f4 b50fe8f 8b3f5c3 9522057 91cda81 9522057 805d014 91cda81 7342b9f 91cda81 fc95e60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import gradio as gr
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
AutoModelForImageTextToText,
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
from PIL import Image
import requests
from io import BytesIO
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4 ; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or use #prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
aya_model = AutoModelForImageTextToText.from_pretrained(
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
)
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
if text.lower().startswith("@aya-vision"):
# Remove the command prefix and trim the prompt.
text_prompt = text[len("@aya-vision"):].strip()
if not files:
yield "Error: Please provide an image for the @aya-vision feature."
return
else:
# For simplicity, use the first provided image.
image = load_image(files[0])
yield progress_bar_html("Processing with Aya-Vision-8b")
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_prompt},
],
}]
inputs = aya_processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(aya_model.device)
# Set up a streamer for Aya-Vision output
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
temperature=0.3
)
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Load images if provided.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
# Validate input: require both text and (optionally) image(s).
if text == "" and not images:
yield "Error: Please input a query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
# Prepare messages for the Qwen2-VL model.
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt = qwen_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = qwen_processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
# Set up a streamer for real-time output.
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
# Start generation in a separate thread.
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
examples = [
[{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}],
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
[{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}],
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Multimodal OCR `@aya-vision 'prompt..'`**",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image"],
file_count="multiple",
placeholder="By default, it runs Qwen2VL OCR, Tag @aya-vision for Aya Vision 8B"
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
demo.launch(debug=True) |