File size: 6,473 Bytes
ed275c9
3f6a788
 
 
 
 
 
5d63d59
ed275c9
5d63d59
 
fc95e60
3f6a788
 
 
ed275c9
7342b9f
 
 
 
 
36ebfe1
 
7342b9f
 
 
c8cd2f3
 
 
7342b9f
 
 
 
a5258c3
3f6a788
 
 
91cda81
 
 
ed275c9
3f6a788
 
 
 
 
 
ed275c9
9522057
3f6a788
 
 
 
 
 
 
 
 
 
 
 
21aef35
239e8eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9c1d72
239e8eb
 
 
 
 
 
 
 
 
 
 
3f6a788
239e8eb
3f6a788
fc95e60
 
 
 
 
 
3f6a788
 
fc95e60
3f6a788
5d63d59
fc95e60
3f6a788
5d63d59
 
3f6a788
 
 
 
 
 
 
 
 
 
 
 
 
5d63d59
fc95e60
5633a75
fe53594
ed275c9
3f6a788
 
 
ed275c9
3f6a788
 
 
ed275c9
3f6a788
ed275c9
7342b9f
ed275c9
 
0de5083
5d63d59
ed275c9
 
5d63d59
df7c39c
4f29dc5
 
df7c39c
 
 
 
78742f4
b50fe8f
8b3f5c3
9522057
91cda81
 
9522057
805d014
91cda81
7342b9f
 
 
 
 
 
91cda81
 
 
 
 
fc95e60
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import gradio as gr
from transformers import (
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
    AutoModelForImageTextToText,
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
from PIL import Image
import requests
from io import BytesIO

# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #FF69B4 ; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or use  #prithivMLmods/Qwen2-VL-OCR2-2B-Instruct
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
    QV_MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
aya_model = AutoModelForImageTextToText.from_pretrained(
    AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
)

@spaces.GPU
def model_inference(input_dict, history):
    text = input_dict["text"].strip()
    files = input_dict.get("files", [])
    
    if text.lower().startswith("@aya-vision"):
        # Remove the command prefix and trim the prompt.
        text_prompt = text[len("@aya-vision"):].strip()
        if not files:
            yield "Error: Please provide an image for the @aya-vision feature."
            return
        else:
            # For simplicity, use the first provided image.
            image = load_image(files[0])
            yield progress_bar_html("Processing with Aya-Vision-8b")
            messages = [{
                "role": "user",
                "content": [
                    {"type": "image", "image": image},
                    {"type": "text", "text": text_prompt},
                ],
            }]
            inputs = aya_processor.apply_chat_template(
                messages,
                padding=True,
                add_generation_prompt=True,
                tokenize=True,
                return_dict=True,
                return_tensors="pt"
            ).to(aya_model.device)
            # Set up a streamer for Aya-Vision output
            streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
            generation_kwargs = dict(
                inputs, 
                streamer=streamer, 
                max_new_tokens=1024, 
                do_sample=True, 
                temperature=0.3
            )
            thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
            thread.start()
            buffer = ""
            for new_text in streamer:
                buffer += new_text
                buffer = buffer.replace("<|im_end|>", "")
                time.sleep(0.01)
                yield buffer
            return

    # Load images if provided.
    if len(files) > 1:
        images = [load_image(image) for image in files]
    elif len(files) == 1:
        images = [load_image(files[0])]
    else:
        images = []
    
    # Validate input: require both text and (optionally) image(s).
    if text == "" and not images:
        yield "Error: Please input a query and optionally image(s)."
        return
    if text == "" and images:
        yield "Error: Please input a text query along with the image(s)."
        return

    # Prepare messages for the Qwen2-VL model.
    messages = [{
        "role": "user",
        "content": [
            *[{"type": "image", "image": image} for image in images],
            {"type": "text", "text": text},
        ],
    }]
    
    prompt = qwen_processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    inputs = qwen_processor(
        text=[prompt],
        images=images if images else None,
        return_tensors="pt",
        padding=True,
    ).to("cuda")
    
    # Set up a streamer for real-time output.
    streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
    
    # Start generation in a separate thread.
    thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
    thread.start()
    
    buffer = ""
    yield progress_bar_html("Processing with Qwen2VL OCR")
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

examples = [
    [{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}],
    [{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
    [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
    [{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}],
    [{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
    [{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
    [{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
    [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
    [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
    [{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
]

demo = gr.ChatInterface(
    fn=model_inference,
    description="# **Multimodal OCR `@aya-vision 'prompt..'`**",
    examples=examples,
    textbox=gr.MultimodalTextbox(
        label="Query Input", 
        file_types=["image"], 
        file_count="multiple", 
        placeholder="By default, it runs Qwen2VL OCR, Tag @aya-vision for Aya Vision 8B"
    ),
    stop_btn="Stop Generation",
    multimodal=True,
    cache_examples=False,
)

demo.launch(debug=True)