Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,288 Bytes
ed275c9 5d63d59 ed275c9 5d63d59 fc95e60 3f6a788 6401487 ed275c9 7342b9f 36ebfe1 6401487 7342b9f c8cd2f3 7342b9f 6401487 3f6a788 91cda81 ed275c9 6401487 3f6a788 6401487 ed275c9 9522057 3f6a788 6401487 3f6a788 64f9a07 6401487 64f9a07 239e8eb 64f9a07 239e8eb 6401487 fc95e60 3f6a788 fc95e60 3f6a788 5d63d59 fc95e60 3f6a788 5d63d59 3f6a788 5d63d59 fc95e60 5633a75 fe53594 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 3f6a788 ed275c9 7342b9f ed275c9 0de5083 5d63d59 ed275c9 6401487 5d63d59 64f9a07 2e3cd2c 64f9a07 df7c39c 78742f4 b50fe8f 8b3f5c3 9522057 91cda81 9522057 86bb6ec 91cda81 7342b9f 6401487 7342b9f 6401487 7342b9f 91cda81 fc95e60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
from PIL import Image
import requests
from io import BytesIO
import cv2
import numpy as np
from transformers import (
Qwen2VLForConditionalGeneration,
AutoProcessor,
TextIteratorStreamer,
AutoModelForImageTextToText,
)
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #FFB6C1; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# Helper function to downsample a video into 10 evenly spaced frames.
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Model and processor setups
# Setup for Qwen2VL OCR branch (default).
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" # or use "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
QV_MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# Setup for Aya-Vision branch.
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
aya_model = AutoModelForImageTextToText.from_pretrained(
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
)
# ---------------------------
# Main Inference Function
# ---------------------------
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"].strip()
files = input_dict.get("files", [])
# Branch for video inference with Aya-Vision using @video-infer.
if text.lower().startswith("@video-infer"):
prompt = text[len("@video-infer"):].strip()
if not files:
yield "Error: Please provide a video for the @video-infer feature."
return
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield "Error: Could not extract frames from the video."
return
# Build messages: start with the prompt then add each frame with its timestamp.
content_list = []
content_list.append({"type": "text", "text": prompt})
for frame, timestamp in frames:
content_list.append({"type": "text", "text": f"Frame {timestamp}:"})
content_list.append({"type": "image", "image": frame})
messages = [{
"role": "user",
"content": content_list,
}]
inputs = aya_processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(aya_model.device)
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
temperature=0.3
)
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Aya-Vision-8b")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Branch for single image inference with Aya-Vision using @aya-vision.
if text.lower().startswith("@aya-vision"):
text_prompt = text[len("@aya-vision"):].strip()
if not files:
yield "Error: Please provide an image for the @aya-vision feature."
return
else:
# Use the first provided image.
image = load_image(files[0])
yield progress_bar_html("Processing with Aya-Vision-8b")
messages = [{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": text_prompt},
],
}]
inputs = aya_processor.apply_chat_template(
messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(aya_model.device)
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(
inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
temperature=0.3
)
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Default branch: Use Qwen2VL OCR for text (with optional images).
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "" and not images:
yield "Error: Please input a query and optionally image(s)."
return
if text == "" and images:
yield "Error: Please input a text query along with the image(s)."
return
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}]
prompt = qwen_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = qwen_processor(
text=[prompt],
images=images if images else None,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL OCR")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
# Gradio Interface Setup
examples = [
[{"text": "@aya-vision Summarize the letter", "files": ["examples/1.png"]}],
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
[{"text": "@video-infer Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
[{"text": "@aya-vision Describe the photo", "files": ["examples/3.png"]}],
[{"text": "@aya-vision Summarize the full image in detail", "files": ["examples/2.jpg"]}],
[{"text": "@aya-vision Describe this image.", "files": ["example_images/campeones.jpg"]}],
[{"text": "@aya-vision What is this UI about?", "files": ["example_images/s2w_example.png"]}],
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "@aya-vision Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Multimodal OCR `@aya-vision for image, @video-infer for video`**",
examples=examples,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Tag @aya-vision for Aya-Vision image infer, @video-infer for Aya-Vision video infer, default runs Qwen2VL OCR"
),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
demo.launch(debug=True) |