File size: 8,246 Bytes
4194c98
d7717b4
 
 
 
 
 
 
 
 
 
 
 
4194c98
 
 
 
6c39bca
4194c98
 
 
 
0f59064
4194c98
1b02265
4194c98
 
 
 
 
 
52a7208
 
 
caefd9f
 
 
4194c98
 
 
 
8748300
4194c98
 
 
 
 
8748300
4194c98
 
caefd9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7717b4
 
5ce59f6
 
ad457bf
226dd1b
7849dfa
5ce59f6
 
 
f9d5aed
5ce59f6
226dd1b
 
7849dfa
5ce59f6
 
 
 
 
 
 
 
 
 
226dd1b
5ce59f6
 
 
ad457bf
292f81f
4194c98
292f81f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d035eb2
4e1803a
 
d035eb2
4e1803a
94b741a
 
d035eb2
94b741a
c7a93a0
94b741a
d035eb2
94b741a
d035eb2
94b741a
d035eb2
94b741a
d035eb2
94b741a
d035eb2
94b741a
d035eb2
94b741a
d035eb2
94b741a
d035eb2
94b741a
d035eb2
399e950
94b741a
d035eb2
292f81f
d7717b4
bbe236d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#Import Relevant Libraries
import streamlit as st
import pickle
import pandas as pd
from catboost import CatBoostClassifier

# Load the trained model and unique values from the pickle file
with open('model_and_key_components.pkl', 'rb') as file:
    saved_components = pickle.load(file)

model = saved_components['model']
unique_values = saved_components['unique_values']

# Page Title with Style
st.markdown(
    f"""
    <div style="text-align: center;">
        <h2 style="color: #3a2a71;">πŸ‘¨β€πŸ’ΌπŸ‘©β€πŸ’Ό Employee Attrition Prediction App</h2>
    </div>
    """,
    unsafe_allow_html=True
)
st.markdown("---")

# Attrition Information
st.markdown(
    """
    **Employee attrition** refers to the phenomenon of employees leaving their jobs for various reasons. It's crucial for organizations to predict attrition to retain valuable talent.
    """
)

# Main content
st.image("https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition.png")

# Link to Detailed Article on Employee Attrition
st.markdown("πŸ”— **Learn more about employee attrition from [Academy to Innovate HR (AIHR)](https://www.aihr.com/wp-content/uploads/Reasons-for-Employee-Attrition.png)**")

st.markdown("---")

# Additional Information for Sample Prediction
st.write("πŸ“Š To make a sample prediction, you can refer to the training dataset information available in the sidebar or input the information of the employee whose attrition you want to predict.")
st.write("Please provide the following information to make a prediction:")

# About Section with Style
st.sidebar.title("ℹ️ About")
st.sidebar.info(
    "This app predicts employee attrition using machine learning on HR data, aiding HR professionals in retention strategies. "
    "It utilizes a CatBoost machine learning model trained on an employee attrition dataset."
)

# Load The Train Dataset
train_df = pd.read_csv("train_data.csv", index_col=None)

# Training Dataset Information in the sidebar
st.sidebar.markdown("πŸ“Š **Training Dataset Information:**")
st.sidebar.write("The model is trained on a sepsis dataset. Here's an overview of the dataset:")
st.sidebar.write(train_df.head())

# Auto-expand sidebar code
st.markdown(
    """
    <style>
        [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
            width: 100%;
        }
    </style>
    """,
    unsafe_allow_html=True
)

# Define the Streamlit app
def main():
    # Define layout with three columns
    col1, col2, col3 = st.columns(3)

    # Column 1
    with col1:
        age = st.number_input("Age", min_value=18, max_value=70)
        monthly_income = st.number_input("Monthly Income")
        num_companies_worked = st.number_input("Number of Companies Worked")
        percent_salary_hike = st.number_input("Percent Salary Hike", min_value=0, max_value=25)
        training_times_last_year = st.number_input("Training Times Last Year", min_value=0, max_value=6)

    # Column 2
    with col2:
        department = st.selectbox("Department", ['Sales', 'Research & Development', 'Human Resources'])
        environment_satisfaction = st.selectbox("Environment Satisfaction", [1, 2, 3, 4])
        job_role = st.selectbox("Job Role", ['Sales Executive', 'Research Scientist', 'Laboratory Technician',
                                              'Manufacturing Director', 'Healthcare Representative', 'Manager',
                                              'Sales Representative', 'Research Director', 'Human Resources'])
        job_satisfaction = st.selectbox("Job Satisfaction", [1, 2, 3, 4])
        work_life_balance = st.selectbox("Work Life Balance", [1, 2, 3, 4])

    # Column 3
    with col3:
        over_time = st.checkbox("Over Time")
        relationship_satisfaction = st.selectbox("Relationship Satisfaction", [1, 2, 3, 4])
        years_since_last_promotion = st.number_input("Years Since Last Promotion")
        years_with_curr_manager = st.number_input("Years With Current Manager")

    # Predict button
    if st.button("Predict Employee Attrition πŸ“Š"):

        # Create a DataFrame to hold the user input data
        input_data = pd.DataFrame({
            'Age': [age],
            'Department': [department],
            'EnvironmentSatisfaction': [environment_satisfaction],
            'JobRole': [job_role],
            'JobSatisfaction': [job_satisfaction],
            'MonthlyIncome': [monthly_income],
            'NumCompaniesWorked': [num_companies_worked],
            'OverTime': [over_time],
            'PercentSalaryHike': [percent_salary_hike],
            'RelationshipSatisfaction': [relationship_satisfaction],
            'TrainingTimesLastYear': [training_times_last_year],
            'WorkLifeBalance': [work_life_balance],
            'YearsSinceLastPromotion': [years_since_last_promotion],
            'YearsWithCurrManager': [years_with_curr_manager]
        })

        # Reorder columns to match the expected order
        input_data = input_data[['Age', 'Department', 'EnvironmentSatisfaction', 'JobRole', 'JobSatisfaction',
                                 'MonthlyIncome', 'NumCompaniesWorked', 'OverTime', 'PercentSalaryHike',
                                 'RelationshipSatisfaction', 'TrainingTimesLastYear', 'WorkLifeBalance',
                                 'YearsSinceLastPromotion', 'YearsWithCurrManager']]

        # Make predictions
        prediction = model.predict(input_data)
        probability = model.predict_proba(input_data)[:, 1]
        
        # Display prediction probability
        if prediction[0] == 1:
            st.subheader("Prediction Probability πŸ“ˆ")
            st.write(f"The probability of the employee leaving is: {probability[0]*100:.2f}%")
        
        # Display characteristic-based recommendations
        st.subheader("Recommendations for Retaining The Employee πŸ’‘:")
        if job_satisfaction == 1 or environment_satisfaction == 1:
            st.markdown("- **Job and Environment Satisfaction**: Enhance job and environment satisfaction through initiatives such as recognition programs and improving workplace conditions.")
        if years_since_last_promotion > 5:
            st.markdown("- **Opportunities for Advancement**: Implement a transparent promotion policy and provide opportunities for career advancement.")
        if years_with_curr_manager > 5:
            st.markdown("- **Change in Reporting Structure**: Offer opportunities for a change in reporting structure to prevent stagnation and promote growth.")
        if percent_salary_hike < 5:
            st.markdown("- **Salary and Benefits Adjustment**: Consider adjusting salary and benefits packages to remain competitive and reward employee loyalty.")
        if training_times_last_year < 2:
            st.markdown("- **Employee Development**: Invest in employee development through training programs and continuous learning opportunities.")
        if over_time:
            st.markdown("- **Workload Evaluation**: Evaluate workload distribution and consider implementing measures to prevent overwork, such as workload balancing and flexible scheduling.")
        if relationship_satisfaction == 1:
            st.markdown("- **Positive Work Environment**: Foster positive relationships and a supportive work environment through team-building activities and open communication channels.")
        if monthly_income < 5000:
            st.markdown("- **Compensation Review**: Review compensation structures and adjust salaries to align with industry standards and employee expectations.")
        if num_companies_worked > 5:
            st.markdown("- **Address High Turnover**: Identify reasons for high turnover and address issues related to job stability, career progression, and organizational culture.")
        if work_life_balance == 1:
            st.markdown("- **Work-Life Balance Initiatives**: Promote work-life balance initiatives, such as flexible work arrangements and wellness programs, to support employee well-being.")

        # General recommendation for all negative predictions
        st.markdown("- **Exit Interviews**: Conduct exit interviews to gather feedback and identify areas for improvement in retention strategies.")

if __name__ == "__main__":
    main()