File size: 18,540 Bytes
b308128
937be2f
cd41e3a
cd1760d
7f877a9
2baca0d
738a5f6
 
94f53fc
224700e
 
94f53fc
 
21090d3
 
04fc021
1941971
 
6204d1b
1941971
8c76c4e
b2e68d1
2baca0d
b2e68d1
2baca0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94f53fc
c15f723
 
 
a9a458f
c15f723
 
 
3c712c1
b8c87a6
a9a458f
6cdbf20
 
3036c83
230d9ba
3036c83
6cdbf20
b8c87a6
3036c83
 
6cdbf20
94f53fc
3036c83
 
 
94f53fc
b8c87a6
a9a458f
b8c87a6
 
ee8b9cc
a2797f8
94f53fc
b8c87a6
cfed1ed
 
b8c87a6
94f53fc
68440cc
94f53fc
02f452d
3c712c1
0743d21
 
 
 
a9a458f
0743d21
a9a458f
0743d21
a9a458f
0743d21
 
a9a458f
0743d21
a9a458f
0743d21
a9a458f
0743d21
 
 
 
 
 
 
 
 
b8c87a6
 
 
 
a9a458f
b8c87a6
a9a458f
b8c87a6
a9a458f
b8c87a6
 
a9a458f
b8c87a6
a9a458f
b8c87a6
a9a458f
b8c87a6
6cdbf20
 
b8c87a6
 
 
6cdbf20
b8c87a6
 
 
6cdbf20
b8c87a6
 
 
 
49c7ae8
0743d21
 
 
 
a9a458f
0743d21
a9a458f
0743d21
a9a458f
0743d21
 
a9a458f
0743d21
a9a458f
0743d21
a9a458f
0743d21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8c87a6
8cbc513
42ca545
75c4a83
b8c87a6
4fee723
6a33daa
4fee723
 
 
 
 
 
 
01785c5
6a33daa
b8c87a6
 
 
1ca4779
 
b8c87a6
 
 
 
b8155ff
b8c87a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fee723
6a33daa
4fee723
 
 
 
 
 
 
 
 
 
b8c87a6
 
 
e7e5931
9d87ac1
e7e5931
b8c87a6
 
 
 
 
b8155ff
21a6ab6
b8c87a6
 
 
 
b8155ff
0743d21
b8c87a6
 
 
 
b8155ff
0743d21
b8c87a6
 
 
 
 
 
 
 
 
e3103da
e7e5931
820bda9
 
 
 
e7e5931
61dbd3b
 
e3103da
b8c87a6
 
21a6ab6
b8c87a6
0743d21
b8c87a6
0743d21
b8c87a6
 
 
31e54cb
b8c87a6
31e54cb
b8c87a6
31e54cb
b8c87a6
 
469b565
b8c87a6
 
e7e5931
 
 
 
 
 
 
 
 
8c76c4e
25203d2
4fee723
 
 
 
edb0bcd
b8c87a6
94f53fc
35e0ec8
8c245db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import lftk
import spacy
import time
import os
import openai

# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")

# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf")

def update_api_key(new_key):
    global api_key
    os.environ['OPENAI_API_TOKEN'] = new_key
    openai.api_key = os.environ['OPENAI_API_TOKEN']

def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
    ''' Normal call of OpenAI API '''
    response = openai.ChatCompletion.create(
    temperature = temperature,
    model=model,
    messages=[
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": user_prompt}
    ])
    
    res = response['choices'][0]['message']['content']
    
    if verbose:
        print('System prompt:', system_prompt)
        print('User prompt:', user_prompt)
        print('GPT response:', res)
        
    return res

def format_chat_prompt(message, chat_history, max_convo_length):
    prompt = ""
    for turn in chat_history[-max_convo_length:]:
        user_message, bot_message = turn
        prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
    prompt = f"{prompt}\nUser: {message}\nAssistant:"
    return prompt

def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
    formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
    print('Prompt + Context:')
    print(formatted_prompt)
    bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Output any <{tab_name}> in the following sentence one per line without any additional text.''',
                       user_prompt = formatted_prompt)
    chat_history.append((message, bot_message))
    return "", chat_history

def vicuna_respond(tab_name, message, chat_history):
    formatted_prompt = f'''Generate the output only for the assistant. Output any {tab_name} in the following sentence one per line without any additional text: {message}'''
    print('Vicuna Ling Ents Fn - Prompt + Context:')
    print(formatted_prompt)
    input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    print(bot_message)
        
    chat_history.append((formatted_prompt, bot_message))
    time.sleep(2)
    return tab_name, "", chat_history

def llama_respond(tab_name, message, chat_history):
    formatted_prompt = f'''Generate the output only for the assistant. Output any {tab_name} in the following sentence one per line without any additional text: {message}'''
    # print('Llama - Prompt + Context:')
    # print(formatted_prompt)
    input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)

    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    # print(bot_message)
        
    chat_history.append((formatted_prompt, bot_message))
    time.sleep(2)
    return tab_name, "", chat_history

def gpt_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history, max_convo_length = 10):
    formatted_system_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_system_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
        elif (strategy == "S2"):
            formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
        elif (strategy == "S3"):
            formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_system_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
        elif (strategy == "S2"):
            formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
        elif (strategy == "S3"):
            formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
    
    formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
    print('Prompt + Context:')
    print(formatted_prompt)
    bot_message = chat(system_prompt = formatted_system_prompt,
                       user_prompt = formatted_prompt)
    chat_history.append((message, bot_message))
    return "", chat_history

def vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
    formatted_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
        elif (strategy == "S2"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
        elif (strategy == "S3"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
        elif (strategy == "S2"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
        elif (strategy == "S3"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
    
    print('Vicuna Strategy Fn - Prompt + Context:')
    print(formatted_prompt)
    input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    print(bot_message)
        
    chat_history.append((formatted_prompt, bot_message))
    time.sleep(2)
    return task_name, "", chat_history

def llama_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
    formatted_prompt = ""
    if (task_name == "POS Tagging"):
        if (strategy == "S1"):
            formatted_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
        elif (strategy == "S2"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
        elif (strategy == "S3"):
            formatted_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
    elif (task_name == "Chunking"):
        if (strategy == "S1"):
            formatted_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
        elif (strategy == "S2"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
        elif (strategy == "S3"):
            formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
    
    # print('Llama Strategies - Prompt + Context:')
    # print(formatted_prompt)
    input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
    output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
    bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    # print(bot_message)
    
    # Remove formatted prompt from bot_message
    bot_message = bot_message.replace(formatted_prompt, '')
    # print(bot_message)
        
    chat_history.append((formatted_prompt, bot_message))
    time.sleep(2)
    return task_name, "", chat_history

def interface():

        # prompt = template_single.format(tab_name, textbox_prompt)

        with gr.Tab("Linguistic Entities"):
            gr.Markdown(""" 
                        ## πŸ“œ Step-By-Step Instructions

                        - Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
                        - Enter your OpenAI Api Key and click on 'Submit Key'.
                        - Select a Linguistic Entity from the Dropdown.
                        - Click 'Submit' to send your inputs to the models.
                        - Scroll to the bottom and click 'Clear' to start again.

                        ### πŸ€– Now the models will output the linguistic entities found in your prompt based on your selections!
                        """)

            # Inputs
            ling_ents_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
            ling_ents_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
            # ling_ents_apikey_btn = gr.Button(value="Submit Key", scale=0)
            linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity")
            ling_ents_btn = gr.Button(value="Submit")

            # Outputs
            gr.Markdown("### Strategy 1 QA-Based Prompting")

            linguistic_features_textbox = gr.Textbox(label="Linguistic Features", disabled=True)

            with gr.Row():
                vicuna_ling_ents_chatbot = gr.Chatbot(label="vicuna-7b")
                llama_ling_ents_chatbot = gr.Chatbot(label="llama-7b")
                gpt_ling_ents_chatbot = gr.Chatbot(label="gpt-3.5")
            clear = gr.ClearButton(components=[ling_ents_prompt, ling_ents_apikey_input, vicuna_ling_ents_chatbot, llama_ling_ents_chatbot, gpt_ling_ents_chatbot])

            # Event Handler for Vicuna Chatbot
            ling_ents_btn.click(vicuna_respond, inputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot], 
                      outputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot])
            
            # Event Handler for LLaMA Chatbot
            ling_ents_btn.click(llama_respond, inputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot], 
                      outputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot])
            
            # Event Handler for GPT 3.5 Chatbot, user must submit api key before submitting the prompt
            # Will activate after getting API key
            # ling_ents_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
            # ling_ents_btn.click(gpt_respond, inputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot], 
            #                     outputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot])

        with gr.Tab("POS/Chunking"):
            gr.Markdown("""
                        ## πŸ“œ Step-By-Step Instructions

                        - Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
                        - Enter your OpenAI Api Key and click on 'Submit Key'.
                        - Select a Task from the Dropdown.
                        - Select a Linguistic Entity from the Dropdown.
                        - Click 'Submit' to send your inputs to the models.
                        - Scroll to the bottom and click 'Clear' to start again.

                        ### πŸ€– Now the models will output the POS Tagging or Chunking in your prompt with three Strategies based on your selections!
                        """)

            # Inputs
            task_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
            with gr.Row():
                have_key = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0)
                task_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password", visible=False)
            task = gr.Dropdown(["POS Tagging", "Chunking"], label="Task")
            task_linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity For Strategy 1")
            task_btn = gr.Button(value="Submit")

            # Outputs
            gr.Markdown("### Strategy 1 QA-Based Prompting")
            strategy1 = gr.Markdown("S1", visible=False)
            with gr.Row():
                vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
                llama_S1_chatbot = gr.Chatbot(label="llama-7b")
                gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
            gr.Markdown("### Strategy 2 Instruction-Based Prompting")
            strategy2 = gr.Markdown("S2", visible=False)
            with gr.Row():
                vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
                llama_S2_chatbot = gr.Chatbot(label="llama-7b")
                gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
            gr.Markdown("### Strategy 3 Structured Prompting")
            strategy3 = gr.Markdown("S3", visible=False)
            with gr.Row():
                vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
                llama_S3_chatbot = gr.Chatbot(label="llama-7b")
                gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
            clear_all = gr.ClearButton(components=[task_prompt, task_apikey_input,
                                               vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot, 
                                               vicuna_S2_chatbot, llama_S2_chatbot, gpt_S2_chatbot,
                                               vicuna_S3_chatbot, llama_S3_chatbot, gpt_S3_chatbot])
            
            # Event Handler for API Key
            def toggle_api_key_input(value):
                if value == "Yes":
                    task_apikey_input.visible = True
                else:
                    task_apikey_input.visible = False
            
            have_key.input(toggle_api_key_input, inputs=have_key)
            task_apikey_input.input(update_api_key, inputs=task_apikey_input)
            
            # vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
            # Event Handlers for Vicuna Chatbot POS/Chunk
            task_btn.click(vicuna_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, vicuna_S1_chatbot], 
                      outputs=[task, task_prompt, vicuna_S1_chatbot])
            task_btn.click(vicuna_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, vicuna_S2_chatbot], 
                      outputs=[task, task_prompt, vicuna_S2_chatbot])
            task_btn.click(vicuna_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, vicuna_S3_chatbot], 
                      outputs=[task, task_prompt, vicuna_S3_chatbot])
            
            # Event Handler for LLaMA Chatbot POS/Chunk
            task_btn.click(llama_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, llama_S1_chatbot], 
                      outputs=[task, task_prompt, llama_S1_chatbot])
            task_btn.click(llama_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, llama_S2_chatbot], 
                      outputs=[task, task_prompt, llama_S2_chatbot])
            task_btn.click(llama_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, llama_S3_chatbot], 
                      outputs=[task, task_prompt, llama_S3_chatbot])
            
            # Event Handler for GPT 3.5 Chatbot POS/Chunk, user must submit api key before submitting the prompt
            # Will activate after getting API key
            # task_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
            if (have_key == "Yes"):
                task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S1_chatbot], 
                                    outputs=[task, task_prompt, gpt_S1_chatbot])
                task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S2_chatbot], 
                                    outputs=[task, task_prompt, gpt_S2_chatbot])
                task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S3_chatbot], 
                                    outputs=[task, task_prompt, gpt_S3_chatbot])



with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
                # Assessing the Articulate
                ## A Comparative Analysis of the Core Linguistic Knowledge in Large Language Models
                """)

    # load interface
    interface()
    
demo.launch()