Spaces:
Runtime error
Runtime error
File size: 18,540 Bytes
b308128 937be2f cd41e3a cd1760d 7f877a9 2baca0d 738a5f6 94f53fc 224700e 94f53fc 21090d3 04fc021 1941971 6204d1b 1941971 8c76c4e b2e68d1 2baca0d b2e68d1 2baca0d 94f53fc c15f723 a9a458f c15f723 3c712c1 b8c87a6 a9a458f 6cdbf20 3036c83 230d9ba 3036c83 6cdbf20 b8c87a6 3036c83 6cdbf20 94f53fc 3036c83 94f53fc b8c87a6 a9a458f b8c87a6 ee8b9cc a2797f8 94f53fc b8c87a6 cfed1ed b8c87a6 94f53fc 68440cc 94f53fc 02f452d 3c712c1 0743d21 a9a458f 0743d21 a9a458f 0743d21 a9a458f 0743d21 a9a458f 0743d21 a9a458f 0743d21 a9a458f 0743d21 b8c87a6 a9a458f b8c87a6 a9a458f b8c87a6 a9a458f b8c87a6 a9a458f b8c87a6 a9a458f b8c87a6 a9a458f b8c87a6 6cdbf20 b8c87a6 6cdbf20 b8c87a6 6cdbf20 b8c87a6 49c7ae8 0743d21 a9a458f 0743d21 a9a458f 0743d21 a9a458f 0743d21 a9a458f 0743d21 a9a458f 0743d21 a9a458f 0743d21 b8c87a6 8cbc513 42ca545 75c4a83 b8c87a6 4fee723 6a33daa 4fee723 01785c5 6a33daa b8c87a6 1ca4779 b8c87a6 b8155ff b8c87a6 4fee723 6a33daa 4fee723 b8c87a6 e7e5931 9d87ac1 e7e5931 b8c87a6 b8155ff 21a6ab6 b8c87a6 b8155ff 0743d21 b8c87a6 b8155ff 0743d21 b8c87a6 e3103da e7e5931 820bda9 e7e5931 61dbd3b e3103da b8c87a6 21a6ab6 b8c87a6 0743d21 b8c87a6 0743d21 b8c87a6 31e54cb b8c87a6 31e54cb b8c87a6 31e54cb b8c87a6 469b565 b8c87a6 e7e5931 8c76c4e 25203d2 4fee723 edb0bcd b8c87a6 94f53fc 35e0ec8 8c245db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import lftk
import spacy
import time
import os
import openai
# Load the Vicuna 7B model and tokenizer
vicuna_tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3")
vicuna_model = AutoModelForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3")
# Load the LLaMA 7b model and tokenizer
llama_tokenizer = AutoTokenizer.from_pretrained("daryl149/llama-2-7b-chat-hf")
llama_model = AutoModelForCausalLM.from_pretrained("daryl149/llama-2-7b-chat-hf")
def update_api_key(new_key):
global api_key
os.environ['OPENAI_API_TOKEN'] = new_key
openai.api_key = os.environ['OPENAI_API_TOKEN']
def chat(system_prompt, user_prompt, model = 'gpt-3.5-turbo', temperature = 0, verbose = False):
''' Normal call of OpenAI API '''
response = openai.ChatCompletion.create(
temperature = temperature,
model=model,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
])
res = response['choices'][0]['message']['content']
if verbose:
print('System prompt:', system_prompt)
print('User prompt:', user_prompt)
print('GPT response:', res)
return res
def format_chat_prompt(message, chat_history, max_convo_length):
prompt = ""
for turn in chat_history[-max_convo_length:]:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
def gpt_respond(tab_name, message, chat_history, max_convo_length = 10):
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('Prompt + Context:')
print(formatted_prompt)
bot_message = chat(system_prompt = f'''Generate the output only for the assistant. Output any <{tab_name}> in the following sentence one per line without any additional text.''',
user_prompt = formatted_prompt)
chat_history.append((message, bot_message))
return "", chat_history
def vicuna_respond(tab_name, message, chat_history):
formatted_prompt = f'''Generate the output only for the assistant. Output any {tab_name} in the following sentence one per line without any additional text: {message}'''
print('Vicuna Ling Ents Fn - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def llama_respond(tab_name, message, chat_history):
formatted_prompt = f'''Generate the output only for the assistant. Output any {tab_name} in the following sentence one per line without any additional text: {message}'''
# print('Llama - Prompt + Context:')
# print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
# print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return tab_name, "", chat_history
def gpt_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history, max_convo_length = 10):
formatted_system_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_system_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (strategy == "S3"):
formatted_system_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_system_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
elif (strategy == "S3"):
formatted_system_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
formatted_prompt = format_chat_prompt(message, chat_history, max_convo_length)
print('Prompt + Context:')
print(formatted_prompt)
bot_message = chat(system_prompt = formatted_system_prompt,
user_prompt = formatted_prompt)
chat_history.append((message, bot_message))
return "", chat_history
def vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
formatted_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (strategy == "S3"):
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
elif (strategy == "S3"):
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
print('Vicuna Strategy Fn - Prompt + Context:')
print(formatted_prompt)
input_ids = vicuna_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = vicuna_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = vicuna_tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return task_name, "", chat_history
def llama_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
formatted_prompt = ""
if (task_name == "POS Tagging"):
if (strategy == "S1"):
formatted_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (strategy == "S3"):
formatted_prompt = f'''POS tag the following sentence using Universal POS tag set without generating any additional text: {message}'''
elif (task_name == "Chunking"):
if (strategy == "S1"):
formatted_prompt = f'''Generate the output only for the assistant. Output any {task_ling_ent} in the following sentence one per line without any additional text: {message}'''
elif (strategy == "S2"):
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
elif (strategy == "S3"):
formatted_prompt = f'''Chunk the following sentence in CoNLL 2000 format with BIO tags without outputing any additional text: {message}'''
# print('Llama Strategies - Prompt + Context:')
# print(formatted_prompt)
input_ids = llama_tokenizer.encode(formatted_prompt, return_tensors="pt")
output_ids = llama_model.generate(input_ids, do_sample=True, max_length=1024, num_beams=5, no_repeat_ngram_size=2)
bot_message = llama_tokenizer.decode(output_ids[0], skip_special_tokens=True)
# print(bot_message)
# Remove formatted prompt from bot_message
bot_message = bot_message.replace(formatted_prompt, '')
# print(bot_message)
chat_history.append((formatted_prompt, bot_message))
time.sleep(2)
return task_name, "", chat_history
def interface():
# prompt = template_single.format(tab_name, textbox_prompt)
with gr.Tab("Linguistic Entities"):
gr.Markdown("""
## π Step-By-Step Instructions
- Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
- Enter your OpenAI Api Key and click on 'Submit Key'.
- Select a Linguistic Entity from the Dropdown.
- Click 'Submit' to send your inputs to the models.
- Scroll to the bottom and click 'Clear' to start again.
### π€ Now the models will output the linguistic entities found in your prompt based on your selections!
""")
# Inputs
ling_ents_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
ling_ents_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your Openai key here", type="password")
# ling_ents_apikey_btn = gr.Button(value="Submit Key", scale=0)
linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity")
ling_ents_btn = gr.Button(value="Submit")
# Outputs
gr.Markdown("### Strategy 1 QA-Based Prompting")
linguistic_features_textbox = gr.Textbox(label="Linguistic Features", disabled=True)
with gr.Row():
vicuna_ling_ents_chatbot = gr.Chatbot(label="vicuna-7b")
llama_ling_ents_chatbot = gr.Chatbot(label="llama-7b")
gpt_ling_ents_chatbot = gr.Chatbot(label="gpt-3.5")
clear = gr.ClearButton(components=[ling_ents_prompt, ling_ents_apikey_input, vicuna_ling_ents_chatbot, llama_ling_ents_chatbot, gpt_ling_ents_chatbot])
# Event Handler for Vicuna Chatbot
ling_ents_btn.click(vicuna_respond, inputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot],
outputs=[linguistic_entities, ling_ents_prompt, vicuna_ling_ents_chatbot])
# Event Handler for LLaMA Chatbot
ling_ents_btn.click(llama_respond, inputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot],
outputs=[linguistic_entities, ling_ents_prompt, llama_ling_ents_chatbot])
# Event Handler for GPT 3.5 Chatbot, user must submit api key before submitting the prompt
# Will activate after getting API key
# ling_ents_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
# ling_ents_btn.click(gpt_respond, inputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot],
# outputs=[linguistic_entities, ling_ents_prompt, gpt_ling_ents_chatbot])
with gr.Tab("POS/Chunking"):
gr.Markdown("""
## π Step-By-Step Instructions
- Enter a sentence for three models to process (Vicuna-7b, LLaMA-7b and GPT-3.5).
- Enter your OpenAI Api Key and click on 'Submit Key'.
- Select a Task from the Dropdown.
- Select a Linguistic Entity from the Dropdown.
- Click 'Submit' to send your inputs to the models.
- Scroll to the bottom and click 'Clear' to start again.
### π€ Now the models will output the POS Tagging or Chunking in your prompt with three Strategies based on your selections!
""")
# Inputs
task_prompt = gr.Textbox(show_label=False, placeholder="Write a prompt and press enter")
with gr.Row():
have_key = gr.Dropdown(["Yes", "No"], label="Do you own an API Key?", scale=0)
task_apikey_input = gr.Textbox(label="Open AI Key", placeholder="Enter your OpenAI key here", type="password", visible=False)
task = gr.Dropdown(["POS Tagging", "Chunking"], label="Task")
task_linguistic_entities = gr.Dropdown(["Noun", "Determiner", "Noun phrase", "Verb phrase", "Dependent clause", "T-units"], label="Linguistic Entity For Strategy 1")
task_btn = gr.Button(value="Submit")
# Outputs
gr.Markdown("### Strategy 1 QA-Based Prompting")
strategy1 = gr.Markdown("S1", visible=False)
with gr.Row():
vicuna_S1_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S1_chatbot = gr.Chatbot(label="llama-7b")
gpt_S1_chatbot = gr.Chatbot(label="gpt-3.5")
gr.Markdown("### Strategy 2 Instruction-Based Prompting")
strategy2 = gr.Markdown("S2", visible=False)
with gr.Row():
vicuna_S2_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S2_chatbot = gr.Chatbot(label="llama-7b")
gpt_S2_chatbot = gr.Chatbot(label="gpt-3.5")
gr.Markdown("### Strategy 3 Structured Prompting")
strategy3 = gr.Markdown("S3", visible=False)
with gr.Row():
vicuna_S3_chatbot = gr.Chatbot(label="vicuna-7b")
llama_S3_chatbot = gr.Chatbot(label="llama-7b")
gpt_S3_chatbot = gr.Chatbot(label="gpt-3.5")
clear_all = gr.ClearButton(components=[task_prompt, task_apikey_input,
vicuna_S1_chatbot, llama_S1_chatbot, gpt_S1_chatbot,
vicuna_S2_chatbot, llama_S2_chatbot, gpt_S2_chatbot,
vicuna_S3_chatbot, llama_S3_chatbot, gpt_S3_chatbot])
# Event Handler for API Key
def toggle_api_key_input(value):
if value == "Yes":
task_apikey_input.visible = True
else:
task_apikey_input.visible = False
have_key.input(toggle_api_key_input, inputs=have_key)
task_apikey_input.input(update_api_key, inputs=task_apikey_input)
# vicuna_strategies_respond(strategy, task_name, task_ling_ent, message, chat_history):
# Event Handlers for Vicuna Chatbot POS/Chunk
task_btn.click(vicuna_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, vicuna_S1_chatbot],
outputs=[task, task_prompt, vicuna_S1_chatbot])
task_btn.click(vicuna_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, vicuna_S2_chatbot],
outputs=[task, task_prompt, vicuna_S2_chatbot])
task_btn.click(vicuna_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, vicuna_S3_chatbot],
outputs=[task, task_prompt, vicuna_S3_chatbot])
# Event Handler for LLaMA Chatbot POS/Chunk
task_btn.click(llama_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, task_prompt, llama_S1_chatbot],
outputs=[task, task_prompt, llama_S1_chatbot])
task_btn.click(llama_strategies_respond, inputs=[strategy2, task, task_linguistic_entities, task_prompt, llama_S2_chatbot],
outputs=[task, task_prompt, llama_S2_chatbot])
task_btn.click(llama_strategies_respond, inputs=[strategy3, task, task_linguistic_entities, task_prompt, llama_S3_chatbot],
outputs=[task, task_prompt, llama_S3_chatbot])
# Event Handler for GPT 3.5 Chatbot POS/Chunk, user must submit api key before submitting the prompt
# Will activate after getting API key
# task_apikey_btn.click(update_api_key, inputs=ling_ents_apikey_input)
if (have_key == "Yes"):
task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S1_chatbot],
outputs=[task, task_prompt, gpt_S1_chatbot])
task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S2_chatbot],
outputs=[task, task_prompt, gpt_S2_chatbot])
task_btn.click(gpt_strategies_respond, inputs=[strategy1, task, task_linguistic_entities, gpt_S3_chatbot],
outputs=[task, task_prompt, gpt_S3_chatbot])
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Assessing the Articulate
## A Comparative Analysis of the Core Linguistic Knowledge in Large Language Models
""")
# load interface
interface()
demo.launch()
|