File size: 11,303 Bytes
50c9e76
835f5ec
 
 
 
 
 
50c9e76
323c81e
 
 
adb7c0e
835f5ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a650e58
835f5ec
 
 
 
 
 
 
 
 
a650e58
835f5ec
 
 
 
 
 
 
 
323c81e
 
835f5ec
323c81e
835f5ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cffde68
835f5ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a87fbc1
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import json
import random

import streamlit as st
from transformers import TextClassificationPipeline, pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification, DistilBertTokenizerFast, DistilBertForSequenceClassification

# We'll be using Torch this time around
import torch
import torch.nn.functional as F

emotion_model_names = (
    "cardiffnlp/twitter-roberta-base-sentiment",
    "finiteautomata/beto-sentiment-analysis",
    "bhadresh-savani/distilbert-base-uncased-emotion",
    "siebert/sentiment-roberta-large-english"
)

class ModelImplementation(object):
    def __init__(
            self, 
            transformer_model_name, 
            model_transformer, 
            tokenizer_model_name,
            tokenizer_func, 
            pipeline_func, 
            parser_func,
            classifier_args={},
            placeholders=[""]
    ):
        self.transformer_model_name = transformer_model_name
        self.tokenizer_model_name = tokenizer_model_name
        self.placeholders = placeholders

        self.model = model_transformer.from_pretrained(self.transformer_model_name)
        self.tokenizer = tokenizer_func.from_pretrained(self.tokenizer_model_name)
        self.classifier = pipeline_func(model=self.model, tokenizer=self.tokenizer, padding=True, truncation=True, **classifier_args)
        self.parser = parser_func

        self.history = []
    
    def predict(self, val):
        result = self.classifier(val)
        return self.parser(self, result)

def ParseEmotionOutput(self, result):
    label = result[0]['label']
    score = result[0]['score']
    if self.transformer_model_name == "cardiffnlp/twitter-roberta-base-sentiment":
        if label == "LABEL_0":
            label = "Negative"
        elif label == "LABEL_2":
            label = "Positive"
        else:
            label = "Neutral"
    return label, score

def ParsePatentOutput(self, result):
    return result

def emotion_model_change():
    st.session_state.emotion_model = ModelImplementation(
        st.session_state.emotion_model_name,
        AutoModelForSequenceClassification,
        st.session_state.emotion_model_name,
        AutoTokenizer,
        pipeline,
        ParseEmotionOutput,
        classifier_args={ "task" : "sentiment-analysis" },
        placeholders=["@AmericanAir just landed - 3hours Late Flight - and now we need to wait TWENTY MORE MINUTES for a gate! I have patience but none for incompetence."]
    )

if "page" not in st.session_state:
    st.session_state.page = "home"

if "emotion_model_name" not in st.session_state:
    st.session_state.emotion_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
    emotion_model_change()

if "patent_data" not in st.session_state:
    f = open('./data/val.json')
    valData = json.load(f)
    f.close()

    patent_data = {}
    for num, label, abstract, claim in zip(valData["patent_numbers"],valData["labels"], valData["abstracts"], valData["claims"]):
        patent_data[num] = {"patent_number":num,"label":label,"abstract":abstract,"claim":claim}

    st.session_state.patent_data = patent_data
    st.session_state.patent_num = list(patent_data.keys())[0]
    st.session_state.weight = 0.5
    st.session_state.patent_abstract_model = ModelImplementation(
        'rk2546/uspto-patents-abstracts',
        DistilBertForSequenceClassification,
        'distilbert-base-uncased',
        DistilBertTokenizerFast,
        TextClassificationPipeline,
        ParsePatentOutput,
        classifier_args={"return_all_scores":True},
    )
    print("Patent abstracts model initialized")
    st.session_state.patent_claim_model = ModelImplementation(
        'rk2546/uspto-patents-claims',
        DistilBertForSequenceClassification,
        'distilbert-base-uncased',
        DistilBertTokenizerFast,
        TextClassificationPipeline,
        ParsePatentOutput,
        classifier_args={"return_all_scores":True},
    )
    print("Patent claims model initialized")

# Title
st.title("CSGY-6613 Project")
# Subtitle
st.markdown("_**Ryan Kim (rk2546)**_")
st.markdown("---")

def PageToHome():
    st.session_state.page = "home"
def PageToEmotion():
    st.session_state.page = "emotion"
def PageToPatent():
    st.session_state.page = "patent"

with st.sidebar:
    st.subheader("Toolbox")
    home_selected = st.button("Home", on_click=PageToHome)
    emotion_selected = st.button(
        "Emotion Analysis [Milestone #2]", 
        on_click=PageToEmotion
    )
    patent_selected = st.button(
        "Patent Prediction [Milestone #3]", 
        on_click=PageToPatent
    )

if st.session_state.page == "emotion":
    st.subheader("Sentiment Analysis")
    if "emotion_model" not in st.session_state:
        st.write("Loading model...")
    else:
        model_option = st.selectbox(
            "What sentiment analysis model do you want to use? NOTE: Lag may occur when loading a new model!",
            emotion_model_names,
            on_change=emotion_model_change,
            key="emotion_model_name"
        )
        form = st.form(key='sentiment-analysis-form')
        text_input = form.text_area(
            "Enter some text for sentiment analysis! If you just want to test it out without entering anything, just press the \"Submit\" button and the model will look at the placeholder.", 
            placeholder=st.session_state.emotion_model.placeholders[0]
        )
        submit = form.form_submit_button('Submit')
        if submit:
            if text_input is None or len(text_input.strip()) == 0:
                to_eval = st.session_state.emotion_model.placeholders[0]
            else:
                to_eval = text_input.strip()
            st.write("You entered:")
            st.markdown("> {}".format(to_eval))
            st.write("Using the NLP model:")
            st.markdown("> {}".format(st.session_state.emotion_model_name))
            label, score = st.session_state.emotion_model.predict(to_eval)  
            st.markdown("#### Result:")
            st.markdown("**{}**: {}".format(label,score))
    
elif st.session_state.page == "patent":
    st.subheader("USPTO Patent Evaluation")
    st.markdown("Below are two inputs - one for an **ABSTRACT** and another for a list of **CLAIMS**. Enter both and select the \"Submit\" button to evaluate the patenteability of your idea.")

    patent_select_list = list(st.session_state.patent_data.keys())
    patent_index_option = st.selectbox(
        "Want to pre-populate with an existing patent? Select the index number of  below.",
        patent_select_list,
        key="patent_num",
    )

    print(patent_index_option)

    if "patent_abstract_model" not in st.session_state or "patent_claim_model" not in st.session_state:
        st.write("Loading models...")
    else:
        with st.form(key='patent-form'):
            col1, col2 = st.columns(2)
            with col1:
                abstract_input = st.text_area(
                    "Enter the abstract of the patent below", 
                    placeholder=st.session_state.patent_data[st.session_state.patent_num]["abstract"],
                    height=400
                )
            with col2:
                claim_input = st.text_area(
                    "Enter the claims of the patent below", 
                    placeholder=st.session_state.patent_data[st.session_state.patent_num]["claim"],
                    height=400
                )
            weight_val = st.slider(
                "How much do the abstract and claims weight when aggregating a total softmax score?",
                min_value=-1.0,
                max_value=1.0,
                value=0.5,
            )
            submit = st.form_submit_button('Submit')

            if submit:
                
                is_custom = False
                if abstract_input is None or len(abstract_input.strip()) == 0:
                    abstract_to_eval = st.session_state.patent_data[st.session_state.patent_num]["abstract"].strip()
                else:
                    abstract_to_eval = abstract_input.strip()
                    is_custom = True

                if claim_input is None or len(claim_input.strip()) == 0:
                    claim_to_eval = st.session_state.patent_data[st.session_state.patent_num]["claim"].strip()
                else:
                    claim_to_eval = claim_input.strip()
                    is_custom = True

                #tokenized_claim = st.session_state.patent_claim_model.tokenizer.encode(claim_to_eval, padding=True, truncation=True, max_length=512, add_special_tokens = True)
                #untokenized_claim = st.session_state.patent_claim_model.tokenizer.decode(tokenized_claim)
                #claim_to_eval2 = untokenized_claim.replace("[CLS]","")
                #claim_to_eval2 = claim_to_eval2.replace("[SEP]","")
                #print(claim_to_eval2)

                abstract_response = st.session_state.patent_abstract_model.predict(abstract_to_eval)
                claim_response = st.session_state.patent_claim_model.predict(claim_to_eval)
                print(abstract_response[0])
                print(claim_response[0])
                print(weight_val)

                claim_weight = (1+weight_val)/2
                abstract_weight = 1-claim_weight
                aggregate_score = [
                    {'label':'REJECTED','score':abstract_response[0][0]['score']*abstract_weight + claim_response[0][0]['score']*claim_weight},
                    {'label':'ACCEPTED','score':abstract_response[0][1]['score']*abstract_weight + claim_response[0][1]['score']*claim_weight}
                ]
                aggregate_score_sorted = sorted(aggregate_score, key=lambda d: d['score'], reverse=True) 
                print(aggregate_score_sorted)
                print(f'Original Rating: {st.session_state.patent_data[st.session_state.patent_num]["label"]}')

                st.markdown("---")
                answerCol1, answerCol2 = st.columns(2)
                with answerCol1:
                    st.markdown("### Abstract Ratings")
                    st.markdown("""
                        > **Reject**: {}  
                        > **Accept**: {}
                    """.format(abstract_response[0][0]["score"], abstract_response[0][1]["score"]))
                with answerCol2:
                    st.markdown("### Claims Ratings")
                    st.markdown("""
                        > **Reject**: {}  
                        > **Accept**: {}
                    """.format(claim_response[0][0]["score"], claim_response[0][1]["score"]))
                
                st.markdown(f'### Final Rating: **{aggregate_score_sorted[0]["label"]}**')
                st.markdown("""
                    > **Reject**: {}  
                    > **Accept**: {}
                """.format(aggregate_score[0]['score'], aggregate_score[1]['score']))
                
                #if not is_custom:
                #    st.markdown('**Original Score:**')
                #    st.markdown(st.session_state.patent_data[st.session_state.patent_num]["label"])
                

else:
    st.write("To get started, access the sidebar on the left (click the arrow in the top-left corner of the screen) and select a tool.")

st.write("")