File size: 28,898 Bytes
b6d0292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8cff9
b6d0292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8cff9
b6d0292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8cff9
b6d0292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d8cff9
 
 
 
b6d0292
2d8cff9
 
b6d0292
2d8cff9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d0292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d301ee1
b6d0292
 
 
 
 
d301ee1
b6d0292
 
d301ee1
b6d0292
 
d301ee1
 
b6d0292
 
 
d301ee1
b6d0292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33cd7e2
b6d0292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33cd7e2
 
b6d0292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33cd7e2
 
2d8cff9
33cd7e2
 
 
 
 
 
2d8cff9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
#!/usr/bin/env python3
"""
AR-Diffusion Chat Interface for Hugging Face Spaces
Experimental model with Quality vs Speed modes
Optimized for Zero GPU deployment with @spaces.GPU
"""

import gradio as gr
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModelForCausalLM
import random
import numpy as np
import re
import time
from typing import List, Tuple
import os
import gc
import spaces

# Global model variables for memory efficiency
tokenizer = None
model = None
device = None

class ARDiffusionGenerator:
    """Base AR-Diffusion generator with shared functionality"""
    
    def __init__(self, tokenizer, model, device):
        self.tokenizer = tokenizer
        self.model = model
        self.device = device
        self.mask_token_id = self._find_mask_token()
    
    def _find_mask_token(self) -> int:
        """Find MASK token ID"""
        for candidate in ['MASK', '<mask>', '[MASK]', '<|mask|>']:
            try:
                tokens = self.tokenizer.encode(candidate, add_special_tokens=False)
                if len(tokens) == 1:
                    return tokens[0]
            except:
                continue
        return getattr(self.tokenizer, 'unk_token_id', 50257) or 50257
    
    def create_prompt(self, instruction: str) -> str:
        """Create Alpaca-style prompt"""
        return f"""### Instruction:
{instruction}

### Response:
"""

class QualityGenerator(ARDiffusionGenerator):
    """Quality-focused AR-Diffusion generator"""
    
    def filter_logits(self, logits: torch.Tensor, top_k: int = 0, top_p: float = 1.0, 
                     temperature: float = 1.0) -> torch.Tensor:
        """Research-grade filtering with proper order"""
        original_shape = logits.shape
        if logits.dim() == 3:
            logits = logits.squeeze(0)
        elif logits.dim() == 1:
            logits = logits.unsqueeze(0)
        
        logits = logits.clone()
        
        # Temperature scaling first
        if temperature != 1.0:
            logits = logits / temperature
        
        # Top-k filtering
        if top_k > 0 and top_k < logits.size(-1):
            topk_vals, _ = torch.topk(logits, top_k, dim=-1)
            thresholds = topk_vals[:, -1].unsqueeze(-1)
            logits = torch.where(logits < thresholds, 
                               torch.full_like(logits, float("-inf")), logits)
        
        # Top-p filtering
        if top_p > 0.0 and top_p < 1.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
            probs = torch.softmax(sorted_logits, dim=-1)
            cum_probs = probs.cumsum(dim=-1)
            
            mask = cum_probs > top_p
            mask[:, 0] = False
            
            scatter_mask = torch.zeros_like(logits, dtype=torch.bool).scatter(
                dim=-1, index=sorted_indices, src=mask)
            logits = torch.where(scatter_mask, 
                               torch.full_like(logits, float("-inf")), logits)
        
        # Restore original shape
        if len(original_shape) == 1:
            logits = logits.squeeze(0)
        elif original_shape[0] == 1 and logits.dim() == 2:
            logits = logits.unsqueeze(0)
        
        return logits
    
    def generate_start(self, prompt: str, length: int = 8) -> List[int]:
        """Generate natural start"""
        tokens = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        input_ids = tokens['input_ids'][0]
        
        generated = []
        current = input_ids.clone()
        
        with torch.no_grad():
            for _ in range(length):
                outputs = self.model(input_ids=current.unsqueeze(0))
                logits = outputs.logits[0, -1]
                
                filtered_logits = self.filter_logits(
                    logits, top_k=50, top_p=0.9, temperature=0.8
                )
                
                probs = F.softmax(filtered_logits, dim=-1)
                next_token = torch.multinomial(probs, 1).item()
                
                if next_token in [self.tokenizer.eos_token_id, 128001, 13]:
                    break
                
                generated.append(next_token)
                current = torch.cat([current, torch.tensor([next_token], device=self.device)])
        
        return generated
    
    def create_sequence(self, prompt: str) -> Tuple[str, torch.Tensor]:
        """Create corrupted sequence for quality mode"""
        prompt_tokens = self.tokenizer(prompt, return_tensors="pt")['input_ids'][0]
        natural_start = self.generate_start(prompt, length=random.randint(8, 12))
        
        # Longer sequences for better quality
        prompt_length = len(prompt_tokens)
        if prompt_length > 25:
            num_masks = random.randint(35, 50)
        elif prompt_length > 15:
            num_masks = random.randint(25, 40)
        else:
            num_masks = random.randint(20, 35)
        
        sequence = (
            prompt_tokens.tolist() +
            natural_start +
            [self.mask_token_id] * num_masks +
            [13]
        )
        
        tensor = torch.tensor(sequence)
        text = self.tokenizer.decode(tensor, skip_special_tokens=False)
        return text, tensor
    
    def generate(self, prompt: str, progress_callback=None) -> Tuple[str, dict]:
        """Quality generation with progress updates and speed tracking"""
        steps = 40
        temperature = 0.7
        start_time = time.time()
        
        if progress_callback:
            progress_callback(0.1, "Creating sequence...")
        
        full_prompt = self.create_prompt(prompt)
        corrupted_text, corrupted_ids = self.create_sequence(full_prompt)
        
        if progress_callback:
            progress_callback(0.2, "Starting quality denoising...")
        
        result, stats = self._denoise_quality(corrupted_ids, steps, temperature, progress_callback)
        
        # Calculate overall stats
        total_time = time.time() - start_time
        response = self._clean_response(result)
        word_count = len(response.split())
        
        stats.update({
            'total_time': total_time,
            'word_count': word_count,
            'words_per_second': word_count / total_time if total_time > 0 else 0
        })
        
        return response, stats
    
    def _denoise_quality(self, corrupted_ids: torch.Tensor, steps: int, temperature: float, progress_callback=None) -> Tuple[str, dict]:
        """Quality denoising with progress updates and speed tracking"""
        current_ids = corrupted_ids.clone()
        total_replacements = 0
        start_time = time.time()
        
        for step in range(steps):
            if progress_callback:
                progress = 0.2 + (step / steps) * 0.7
                elapsed = time.time() - start_time
                tokens_per_sec = total_replacements / elapsed if elapsed > 0 else 0
                progress_callback(progress, f"Quality step {step+1}/{steps} | {tokens_per_sec:.1f} tok/s")
            
            mask_positions = (current_ids == self.mask_token_id).nonzero(as_tuple=True)[0]
            
            if len(mask_positions) == 0:
                break
            
            with torch.no_grad():
                outputs = self.model(input_ids=current_ids.unsqueeze(0).to(self.device))
                logits = outputs.logits[0]
                
                current_temp = max(0.4, temperature * (1 - step / steps))
                
                # Conservative replacement for quality
                if step < steps // 4:
                    max_replacements = min(1, len(mask_positions))
                elif step < steps // 2:
                    max_replacements = min(2, len(mask_positions))
                else:
                    max_replacements = min(3, len(mask_positions))
                
                sorted_positions = sorted(mask_positions.tolist())
                
                for pos in sorted_positions[:max_replacements]:
                    if pos < len(logits):
                        token_logits = logits[pos].clone()
                        
                        # Anti-repetition
                        context_start = max(0, pos - 5)
                        recent_tokens = set(current_ids[context_start:pos].tolist())
                        for recent_token in recent_tokens:
                            if recent_token < len(token_logits):
                                token_logits[recent_token] -= 8.0
                        
                        # Quality filtering
                        filtered_logits = self.filter_logits(
                            token_logits, 
                            top_k=30,
                            top_p=0.75,
                            temperature=current_temp
                        )
                        
                        probs = F.softmax(filtered_logits, dim=-1)
                        probs = torch.clamp(probs, min=1e-8, max=1.0)
                        new_token = torch.multinomial(probs, 1).item()
                        
                        # Filter unwanted tokens
                        unwanted = [self.mask_token_id, 128001, 128000]
                        if new_token in unwanted:
                            top_k_vals, top_k_indices = torch.topk(filtered_logits, 10)
                            for alternative in top_k_indices:
                                if alternative.item() not in unwanted:
                                    new_token = alternative.item()
                                    break
                        
                        current_ids[pos] = new_token
                        total_replacements += 1
        
        if progress_callback:
            elapsed = time.time() - start_time
            final_speed = total_replacements / elapsed if elapsed > 0 else 0
            progress_callback(0.95, f"Finalizing... | Final speed: {final_speed:.1f} tok/s")
        
        # Calculate final statistics
        total_time = time.time() - start_time
        stats = {
            'mode': 'Quality',
            'steps': steps,
            'tokens_replaced': total_replacements,
            'generation_time': total_time,
            'tokens_per_second': total_replacements / total_time if total_time > 0 else 0
        }
        
        result = self.tokenizer.decode(current_ids, skip_special_tokens=True)
        return result, stats
    
    def _clean_response(self, text: str) -> str:
        """Clean response for quality output"""
        if "### Response:" in text:
            response = text.split("### Response:")[-1].strip()
        else:
            response = text.strip()
        
        if not response:
            return text
        
        # Quality cleaning
        response = re.sub(r"'{2,}", "", response)
        response = re.sub(r'"{2,}', "", response)
        response = re.sub(r"\.{2,}", ".", response)
        response = re.sub(r",{2,}", ",", response)
        response = re.sub(r"\s+", " ", response)
        
        # Remove artifacts
        response = re.sub(r"\$+", "", response)
        response = re.sub(r"#+", "", response)
        response = re.sub(r"@+", "", response)
        
        response = response.strip()
        if response and not response.endswith(('.', '!', '?')):
            response += "."
        
        return response

class SpeedGenerator(ARDiffusionGenerator):
    """Speed-focused AR-Diffusion generator"""
    
    def filter_logits(self, logits: torch.Tensor, top_k: int = 15, top_p: float = 0.8, 
                     temperature: float = 1.0) -> torch.Tensor:
        """Fast logits filtering"""
        logits = logits.clone()
        
        if temperature != 1.0:
            logits = logits / temperature
        
        # Top-k filtering
        if top_k > 0 and top_k < logits.size(-1):
            topk_vals, _ = torch.topk(logits, top_k, dim=-1)
            threshold = topk_vals[-1]
            logits = torch.where(logits < threshold, torch.full_like(logits, float("-inf")), logits)
        
        # Top-p filtering
        if top_p > 0.0 and top_p < 1.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
            probs = torch.softmax(sorted_logits, dim=-1)
            cum_probs = probs.cumsum(dim=-1)
            
            mask = cum_probs > top_p
            mask[0] = False
            
            scatter_mask = torch.zeros_like(logits, dtype=torch.bool)
            scatter_mask.scatter_(0, sorted_indices, mask)
            logits = torch.where(scatter_mask, torch.full_like(logits, float("-inf")), logits)
        
        return logits
    
    def generate_start(self, prompt: str, length: int = 6) -> List[int]:
        """Generate natural start for speed mode"""
        tokens = self.tokenizer(prompt, return_tensors="pt").to(self.device)
        input_ids = tokens['input_ids'][0]
        
        generated = []
        current = input_ids.clone()
        
        with torch.no_grad():
            for _ in range(length):
                outputs = self.model(input_ids=current.unsqueeze(0))
                logits = outputs.logits[0, -1]
                
                filtered_logits = self.filter_logits(logits, top_k=20, top_p=0.9, temperature=0.8)
                probs = F.softmax(filtered_logits, dim=-1)
                next_token = torch.multinomial(probs, 1).item()
                
                if next_token in [self.tokenizer.eos_token_id, 128001, 13]:
                    break
                
                generated.append(next_token)
                current = torch.cat([current, torch.tensor([next_token], device=self.device)])
        
        return generated
    
    def create_sequence(self, prompt: str) -> Tuple[str, torch.Tensor]:
        """Create sequence optimized for speed"""
        prompt_tokens = self.tokenizer(prompt, return_tensors="pt")['input_ids'][0]
        natural_start = self.generate_start(prompt, length=6)
        
        # Shorter sequences for speed
        prompt_words = len(prompt.split())
        if prompt_words > 8:
            num_masks = random.randint(15, 25)
        else:
            num_masks = random.randint(12, 20)
        
        sequence = (
            prompt_tokens.tolist() +
            natural_start +
            [self.mask_token_id] * num_masks +
            [13]
        )
        
        tensor = torch.tensor(sequence)
        text = self.tokenizer.decode(tensor, skip_special_tokens=False)
        return text, tensor
    
    def generate(self, prompt: str, progress_callback=None) -> Tuple[str, dict]:
        """Speed generation with progress updates and speed tracking"""
        steps = 10
        temperature = 0.8
        start_time = time.time()
        
        if progress_callback:
            progress_callback(0.1, "Creating sequence...")
        
        full_prompt = self.create_prompt(prompt)
        corrupted_text, corrupted_ids = self.create_sequence(full_prompt)
        
        if progress_callback:
            progress_callback(0.2, "Starting speed denoising...")
        
        result, stats = self._denoise_speed(corrupted_ids, steps, temperature, progress_callback)
        
        # Calculate overall stats
        total_time = time.time() - start_time
        response = self._clean_response(result)
        word_count = len(response.split())
        
        stats.update({
            'total_time': total_time,
            'word_count': word_count,
            'words_per_second': word_count / total_time if total_time > 0 else 0
        })
        
        return response, stats
    
    def _denoise_speed(self, corrupted_ids: torch.Tensor, steps: int, temperature: float, progress_callback=None) -> Tuple[str, dict]:
        """Ultra-fast denoising with progress updates and speed tracking"""
        current_ids = corrupted_ids.clone()
        total_replacements = 0
        start_time = time.time()
        
        # Use mixed precision for speed on GPU
        with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=self.device.type == 'cuda'):
            for step in range(steps):
                if progress_callback:
                    progress = 0.2 + (step / steps) * 0.7
                    elapsed = time.time() - start_time
                    tokens_per_sec = total_replacements / elapsed if elapsed > 0 else 0
                    progress_callback(progress, f"Speed step {step+1}/{steps} | {tokens_per_sec:.1f} tok/s")
                
                mask_pos = (current_ids == self.mask_token_id).nonzero(as_tuple=True)[0]
                
                if len(mask_pos) == 0:
                    break
                
                with torch.no_grad():
                    outputs = self.model(input_ids=current_ids.unsqueeze(0).to(self.device))
                    logits = outputs.logits[0]
                    
                    current_temp = temperature * (0.9 + 0.2 * (step / steps))
                    
                    # Aggressive replacement for speed
                    max_replace = min(8, len(mask_pos))
                    positions = sorted(mask_pos.tolist())[:max_replace]
                    
                    for pos in positions:
                        if pos < len(logits):
                            token_logits = logits[pos].clone()
                            
                            # Light anti-repetition
                            recent_start = max(0, pos - 3)
                            recent_tokens = set(current_ids[recent_start:pos].tolist())
                            for token in recent_tokens:
                                if token < len(token_logits):
                                    token_logits[token] -= 3.0
                            
                            # Fast filtering
                            filtered_logits = self.filter_logits(
                                token_logits, top_k=12, top_p=0.85, temperature=current_temp
                            )
                            
                            probs = F.softmax(filtered_logits, dim=-1)
                            probs = torch.clamp(probs, min=1e-8, max=1.0)
                            new_token = torch.multinomial(probs, 1).item()
                            
                            # Quick filtering
                            if new_token in [self.mask_token_id, 128001, 128000]:
                                top_vals, top_indices = torch.topk(filtered_logits, 3)
                                new_token = top_indices[1].item()
                            
                            current_ids[pos] = new_token
                            total_replacements += 1
        
        if progress_callback:
            elapsed = time.time() - start_time
            final_speed = total_replacements / elapsed if elapsed > 0 else 0
            progress_callback(0.95, f"Finalizing... | Final speed: {final_speed:.1f} tok/s")
        
        # Calculate final statistics
        total_time = time.time() - start_time
        stats = {
            'mode': 'Speed',
            'steps': steps,
            'tokens_replaced': total_replacements,
            'generation_time': total_time,
            'tokens_per_second': total_replacements / total_time if total_time > 0 else 0
        }
        
        result = self.tokenizer.decode(current_ids, skip_special_tokens=True)
        return result, stats
    
    def _clean_response(self, text: str) -> str:
        """Clean response for speed output"""
        if "### Response:" in text:
            response = text.split("### Response:")[-1].strip()
        else:
            response = text.strip()
        
        if not response:
            return text
        
        # Minimal cleaning for speed
        response = re.sub(r"'{3,}", "", response)
        response = re.sub(r'"{3,}', "", response)
        response = re.sub(r"\.{3,}", ".", response)
        response = re.sub(r",{3,}", ",", response)
        response = re.sub(r"\s+", " ", response)
        
        response = response.strip()
        if response and not response.endswith(('.', '!', '?')):
            response += "."
        
        return response

@spaces.GPU
def load_model():
    """Load model with Zero GPU optimization using @spaces.GPU"""
    global tokenizer, model, device
    
    if tokenizer is not None and model is not None:
        return tokenizer, model, device
    
    try:
        # This appears to be a LoRA adapter
        adapter_path = "rootxhacker/llama-3B-diffusion-exp-fixed"
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        print(f"Loading AR-Diffusion model on {device}...")
        
        # Load tokenizer from adapter
        tokenizer = AutoTokenizer.from_pretrained(adapter_path, trust_remote_code=True)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
        
        # Load the adapter model
        print("Loading adapter model...")
        model = AutoModelForCausalLM.from_pretrained(
            adapter_path,
            torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
            device_map="auto" if device.type == "cuda" else None,
            trust_remote_code=True,
            low_cpu_mem_usage=True
        )
        
        print("βœ… AR-Diffusion model loaded successfully!")
        return tokenizer, model, device
        
    except Exception as e:
        print(f"❌ Error loading {adapter_path}: {e}")
        
        # Fallback to a working model for demonstration
        print("πŸ”„ Falling back to demonstration model...")
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        fallback_model = "gpt2-medium"
        
        tokenizer = AutoTokenizer.from_pretrained(fallback_model)
        if tokenizer.pad_token is None:
            tokenizer.pad_token = tokenizer.eos_token
            
        model = AutoModelForCausalLM.from_pretrained(
            fallback_model,
            torch_dtype=torch.float16 if device.type == "cuda" else torch.float32,
            device_map="auto" if device.type == "cuda" else None,
            low_cpu_mem_usage=True
        )
        
        print(f"βœ… Fallback model {fallback_model} loaded successfully!")
        print("⚠️ Note: Using fallback model - AR-Diffusion features may not work as expected")
        return tokenizer, model, device

def cleanup_memory():
    """Clean up GPU memory"""
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    gc.collect()

@spaces.GPU
def chat_function(message, history, mode, progress=gr.Progress()):
    """Main chat function with @spaces.GPU decorator, progress tracking, and speed display"""
    if not message.strip():
        return history, "", ""
    
    try:
        # Load model (this will run on GPU when GPU is allocated)
        progress(0.05)
        tok, mod, dev = load_model()
        
        # Create appropriate generator
        if mode == "Quality (Slower, Better)":
            generator = QualityGenerator(tok, mod, dev)
            progress(0.1)
        else:
            generator = SpeedGenerator(tok, mod, dev)
            progress(0.1)
        
        # Generate response with progress callback
        def progress_callback(pct, status_msg):
            progress(pct)
        
        response, stats = generator.generate(message, progress_callback)
        
        progress(1.0)
        
        # Create performance info
        perf_info = f"""**⚑ Performance Stats:**
- **Mode:** {stats['mode']}
- **Generation Time:** {stats['generation_time']:.2f}s
- **Tokens Replaced:** {stats['tokens_replaced']}
- **Speed:** {stats['tokens_per_second']:.1f} tokens/sec
- **Words Generated:** {stats['word_count']} words
- **Words/Second:** {stats['words_per_second']:.1f}
- **Steps:** {stats['steps']}"""
        
        # Update history
        history.append([message, response])
        
        # Cleanup memory for Zero GPU efficiency
        cleanup_memory()
        
        return history, "", perf_info
        
    except Exception as e:
        error_msg = f"Error: {str(e)}"
        history.append([message, error_msg])
        cleanup_memory()
        return history, "", f"**❌ Error occurred during generation**"

def clear_chat():
    """Clear chat history and cleanup memory"""
    cleanup_memory()
    return [], ""

# Create Gradio interface
def create_interface():
    with gr.Blocks(
        title="AR-Diffusion Chat - Experimental Model",
        theme=gr.themes.Soft(),
        css="""
        .warning-box {
            background-color: #fff3cd;
            border: 1px solid #ffeaa7;
            border-radius: 5px;
            padding: 10px;
            margin: 10px 0;
        }
        """
    ) as interface:
        
        gr.HTML("""
        <div style="text-align: center; margin-bottom: 20px;">
            <h1>πŸ§ͺ AR-Diffusion Chat Interface</h1>
            <p><strong>⚠️ EXPERIMENTAL MODEL ⚠️</strong></p>
            <p>This is an experimental AR-Diffusion model. Results may vary and the model is still under development.</p>
            <p><em>πŸ”₯ Powered by Zero GPU with @spaces.GPU</em></p>
            <p><small>Model: rootxhacker/llama-3B-diffusion-exp-fixed (LoRA Adapter)</small></p>
        </div>
        """)
        
        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(
                    [],
                    elem_id="chatbot",
                    bubble_full_width=False,
                    height=500,
                    show_label=False
                )
                
                with gr.Row():
                    msg = gr.Textbox(
                        placeholder="Type your message here...",
                        show_label=False,
                        scale=9
                    )
                    send_btn = gr.Button("Send", scale=1, variant="primary")
                
                with gr.Row():
                    clear_btn = gr.Button("Clear Chat", variant="secondary")
            
            with gr.Column(scale=1):
                gr.HTML("""
                <div class="warning-box">
                    <h3>βš™οΈ Mode Selection</h3>
                    <p><strong>Quality Mode:</strong> Slower but more coherent responses (~40 steps)</p>
                    <p><strong>Speed Mode:</strong> Faster responses with decent quality (~10 steps)</p>
                    <p><em>πŸ”₯ GPU acceleration via @spaces.GPU</em></p>
                </div>
                """)
                
                mode = gr.Radio(
                    choices=["Quality (Slower, Better)", "Speed (Faster)"],
                    value="Quality (Slower, Better)",
                    label="Generation Mode"
                )
                
                # Performance display
                perf_display = gr.Markdown(
                    "**⚑ Performance Stats:** *Generate a message to see stats*",
                    elem_id="performance"
                )
                
                gr.HTML("""
                <div class="warning-box">
                    <h3>ℹ️ About AR-Diffusion</h3>
                    <p>This experimental model uses autoregressive diffusion for text generation, creating responses by iteratively denoising masked tokens.</p>
                    <br>
                    <p><strong>Model:</strong> LoRA adapter trained for AR-Diffusion</p>
                    <p><strong>Note:</strong> This model is experimental and may produce unexpected results. If the specific model fails to load, a fallback model will be used for demonstration.</p>
                </div>
                """)
        
        # Event handlers
        def submit_message(message, history, mode):
            return chat_function(message, history, mode)
        
        send_btn.click(
            submit_message,
            inputs=[msg, chatbot, mode],
            outputs=[chatbot, msg, perf_display]
        )
        
        msg.submit(
            submit_message,
            inputs=[msg, chatbot, mode],
            outputs=[chatbot, msg, perf_display]
        )
        
        clear_btn.click(
            clear_chat,
            outputs=[chatbot, perf_display]
        )
    
    return interface

# Launch interface
if __name__ == "__main__":
    demo = create_interface()
    demo.queue(max_size=20)  # Important for Zero GPU
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )

# Requirements.txt should include:
# torch>=2.0.0
# transformers>=4.30.0
# gradio
# numpy
# accelerate
# spaces
# peft