File size: 7,598 Bytes
820ac3d
a5e055b
2796a5e
7e2d83a
820ac3d
7e2d83a
2796a5e
c39dc38
2796a5e
 
 
a5e055b
820ac3d
 
 
d45486e
820ac3d
 
 
a5e055b
820ac3d
2796a5e
 
 
 
 
 
 
 
a5e055b
820ac3d
 
 
 
2796a5e
ab8bcac
2796a5e
820ac3d
 
 
 
 
2796a5e
 
820ac3d
 
 
 
 
f09bc1d
820ac3d
 
 
 
 
 
 
 
 
2796a5e
820ac3d
 
 
 
 
 
 
 
 
 
 
 
a5e055b
820ac3d
 
 
7e2d83a
820ac3d
 
 
f09bc1d
11cd804
c39dc38
820ac3d
 
 
 
7e2d83a
820ac3d
 
 
 
 
 
106d95c
820ac3d
 
 
 
d3fde93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
820ac3d
 
d3fde93
 
2c073eb
 
 
 
 
 
 
d3fde93
 
2c073eb
 
 
820ac3d
 
 
d3fde93
 
 
 
 
 
a5e055b
820ac3d
f073c65
d3fde93
 
820ac3d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
from PIL import Image
import subprocess
import spaces  # Add this import

# Install flash-attention
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"

# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"

device = "cuda" if torch.cuda.is_available() else "cpu"

# Quantization config for text model
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
    TEXT_MODEL_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config
)

vision_model = AutoModelForCausalLM.from_pretrained(
    VISION_MODEL_ID, 
    trust_remote_code=True, 
    torch_dtype="auto", 
    attn_implementation="flash_attention_2"
).to(device).eval()

vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)

# Helper functions
@spaces.GPU
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
    conversation = [{"role": "system", "content": system_prompt}]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    conversation.append({"role": "user", "content": message})

    input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
    streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=temperature > 0,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        eos_token_id=[128001, 128008, 128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
        thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield history + [[message, buffer]]

@spaces.GPU  # Add this decorator
def process_vision_query(image, text_input):
    prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
    image = Image.fromarray(image).convert("RGB")
    inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
    
    with torch.no_grad():
        generate_ids = vision_model.generate(
            **inputs, 
            max_new_tokens=1000, 
            eos_token_id=vision_processor.tokenizer.eos_token_id
        )
    
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    return response

# Custom CSS
custom_css = """
body { background-color: #0b0f19; color: #e2e8f0; font-family: 'Arial', sans-serif;}
#custom-header { text-align: center; padding: 20px 0; background-color: #1a202c; margin-bottom: 20px; border-radius: 10px;}
#custom-header h1 { font-size: 2.5rem; margin-bottom: 0.5rem;}
#custom-header h1 .blue { color: #60a5fa;}
#custom-header h1 .pink { color: #f472b6;}
#custom-header h2 { font-size: 1.5rem; color: #94a3b8;}
.suggestions { display: flex; justify-content: center; flex-wrap: wrap; gap: 1rem; margin: 20px 0;}
.suggestion { background-color: #1e293b; border-radius: 0.5rem; padding: 1rem; display: flex; align-items: center; transition: transform 0.3s ease; width: 200px;}
.suggestion:hover { transform: translateY(-5px);}
.suggestion-icon { font-size: 1.5rem; margin-right: 1rem; background-color: #2d3748; padding: 0.5rem; border-radius: 50%;}
.gradio-container { max-width: 100% !important;}
#component-0, #component-1, #component-2 { max-width: 100% !important;}
footer { text-align: center; margin-top: 2rem; color: #64748b;}
"""

# Custom HTML for the header
custom_header = """
<div id="custom-header">
    <h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1>
    <h2>Text and Vision AI at Your Service</h2>
</div>
"""

# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
    <div class="suggestion">
        <span class="suggestion-icon">💬</span>
        <p>Chat with the Text Model</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🖼️</span>
        <p>Analyze Images with Vision Model</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🤖</span>
        <p>Get AI-generated responses</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🔍</span>
        <p>Explore advanced options</p>
    </div>
</div>
"""

# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
    body_background_fill="#0b0f19",
    body_text_color="#e2e8f0",
    button_primary_background_fill="#3b82f6",
    button_primary_background_fill_hover="#2563eb",
    button_primary_text_color="white",
    block_title_text_color="#94a3b8",
    block_label_text_color="#94a3b8",
)) as demo:
    gr.HTML(custom_header)
    gr.HTML(custom_suggestions)

    with gr.Tab("Text Model (Phi-3.5-mini)"):
        chatbot = gr.Chatbot(height=400)
        msg = gr.Textbox(label="Message", placeholder="Type your message here...")
        with gr.Accordion("Advanced Options", open=False):
            system_prompt = gr.Textbox(value="You are a helpful assistant", label="System Prompt")
            temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature")
            max_new_tokens = gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens")
            top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p")
            top_k = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k")
        
        submit_btn = gr.Button("Submit", variant="primary")
        clear_btn = gr.Button("Clear Chat", variant="secondary")

        submit_btn.click(stream_text_chat, [msg, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k], [chatbot])
        clear_btn.click(lambda: None, None, chatbot, queue=False)

    with gr.Tab("Vision Model (Phi-3.5-vision)"):
        with gr.Row():
            with gr.Column(scale=1):
                vision_input_img = gr.Image(label="Upload an Image", type="pil")
                vision_text_input = gr.Textbox(label="Ask a question about the image", placeholder="What do you see in this image?")
                vision_submit_btn = gr.Button("Analyze Image", variant="primary")
            with gr.Column(scale=1):
                vision_output_text = gr.Textbox(label="AI Analysis", lines=10)
        
        vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])

    gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI</footer>")

if __name__ == "__main__":
    demo.launch()