File size: 5,076 Bytes
820ac3d
a5e055b
2796a5e
7e2d83a
820ac3d
7e2d83a
2796a5e
c39dc38
2796a5e
 
 
a5e055b
820ac3d
 
 
d45486e
820ac3d
 
 
a5e055b
820ac3d
2796a5e
 
 
 
 
 
 
 
a5e055b
820ac3d
 
 
 
2796a5e
ab8bcac
2796a5e
820ac3d
 
 
 
 
2796a5e
 
820ac3d
 
 
 
 
f09bc1d
820ac3d
 
 
 
 
 
 
 
 
2796a5e
820ac3d
 
 
 
 
 
 
 
 
 
 
 
a5e055b
820ac3d
 
 
7e2d83a
820ac3d
 
 
f09bc1d
11cd804
c39dc38
820ac3d
 
 
 
7e2d83a
820ac3d
 
 
 
 
 
106d95c
820ac3d
 
 
 
f09bc1d
820ac3d
 
 
 
 
 
2c073eb
 
 
 
 
 
 
 
 
 
 
 
 
820ac3d
 
 
 
 
 
 
 
 
a5e055b
820ac3d
f073c65
820ac3d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
from PIL import Image
import subprocess
import spaces  # Add this import

# Install flash-attention
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"

# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"

device = "cuda" if torch.cuda.is_available() else "cpu"

# Quantization config for text model
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
    TEXT_MODEL_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config
)

vision_model = AutoModelForCausalLM.from_pretrained(
    VISION_MODEL_ID, 
    trust_remote_code=True, 
    torch_dtype="auto", 
    attn_implementation="flash_attention_2"
).to(device).eval()

vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)

# Helper functions
@spaces.GPU
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20):
    conversation = [{"role": "system", "content": system_prompt}]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    conversation.append({"role": "user", "content": message})

    input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
    streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        max_new_tokens=max_new_tokens,
        do_sample=temperature > 0,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        eos_token_id=[128001, 128008, 128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
        thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield history + [[message, buffer]]

@spaces.GPU  # Add this decorator
def process_vision_query(image, text_input):
    prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
    image = Image.fromarray(image).convert("RGB")
    inputs = vision_processor(prompt, image, return_tensors="pt").to(device)
    
    with torch.no_grad():
        generate_ids = vision_model.generate(
            **inputs, 
            max_new_tokens=1000, 
            eos_token_id=vision_processor.tokenizer.eos_token_id
        )
    
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    return response

# Update the Gradio interface part
with gr.Blocks() as demo:
    gr.HTML(TITLE)
    gr.Markdown(DESCRIPTION)

    with gr.Tab("Text Model (Phi-3.5-mini)"):
        chatbot = gr.Chatbot(height=600)
        msg = gr.Textbox(label="Message")
        with gr.Accordion("Advanced Options", open=False):
            system_prompt = gr.Textbox(value="You are a helpful assistant", label="System Prompt")
            temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature")
            max_new_tokens = gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens")
            top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p")
            top_k = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k")
        
        submit_btn = gr.Button("Submit")
        clear_btn = gr.Button("Clear")

        submit_btn.click(stream_text_chat, [msg, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k], [chatbot])
        clear_btn.click(lambda: None, None, chatbot, queue=False)

    with gr.Tab("Vision Model (Phi-3.5-vision)"):
        with gr.Row():
            with gr.Column():
                vision_input_img = gr.Image(label="Input Picture")
                vision_text_input = gr.Textbox(label="Question")
                vision_submit_btn = gr.Button(value="Submit")
            with gr.Column():
                vision_output_text = gr.Textbox(label="Output Text")
        
        vision_submit_btn.click(process_vision_query, [vision_input_img, vision_text_input], [vision_output_text])

if __name__ == "__main__":
    demo.launch()