File size: 4,646 Bytes
84669bc
031a20c
29edf23
7feda08
6ba2176
7fc55d1
 
7feda08
8e09e8c
7fc55d1
 
 
6ba2176
031a20c
6ba2176
 
 
 
 
7feda08
 
 
 
c93f011
 
 
031a20c
 
 
5065a5b
031a20c
2ff4e71
41941cd
2ff4e71
41941cd
031a20c
 
 
 
 
 
2ff4e71
5065a5b
 
 
 
 
 
 
 
3c39506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f0ffd9
5065a5b
 
 
 
 
6f0ffd9
5065a5b
 
 
 
 
 
 
 
 
 
 
 
73ae45e
5065a5b
 
 
 
 
73ae45e
5065a5b
73ae45e
3c39506
 
5065a5b
73ae45e
5065a5b
d3c4b21
41941cd
 
 
 
ddf9006
d3c4b21
41941cd
 
 
5065a5b
 
 
 
 
 
3c39506
5065a5b
 
 
 
aed9390
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gradio as gr
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
import torch
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
from gensim import downloader as api

# Ensure necessary NLTK data is downloaded
nltk.download('wordnet')
nltk.download('omw-1.4')

# Ensure the SpaCy model is installed
try:
    nlp = spacy.load("en_core_web_sm")
except OSError:
    subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
    nlp = spacy.load("en_core_web_sm")

# Load a smaller Word2Vec model from Gensim's pre-trained models
word_vectors = api.load("glove-wiki-gigaword-50")

# Check for GPU and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load GPT-3.5-turbo model and tokenizer from Hugging Face
tokenizer_ai = AutoTokenizer.from_pretrained("Xenova/gpt-3.5-turbo")
model_ai = AutoModel.from_pretrained("Xenova/gpt-3.5-turbo").to(device)

# AI detection function using GPT-3.5-turbo-based model
def detect_ai_generated(text):
    inputs = tokenizer_ai(text, return_tensors="pt", truncation=True, max_length=512).to(device)
    with torch.no_grad():
        outputs = model_ai(**inputs)
        # Since this model does not directly output classification logits, you'll need to process the hidden states
        # For simplicity, let's just use the first hidden state for now (you may need to adjust based on your use case)
        hidden_state = outputs.last_hidden_state[:, 0, :]  # Use the first token's representation
        # Example: calculate some kind of score based on the hidden state
        score = torch.mean(hidden_state).item()
    return f"AI-Generated Content Score: {score:.2f}"

# Function to get synonyms using NLTK WordNet
def get_synonyms_nltk(word, pos):
    synsets = wordnet.synsets(word, pos=pos)
    if synsets:
        lemmas = synsets[0].lemmas()
        return [lemma.name() for lemma in lemmas]
    return []

# Function to capitalize the first letter of sentences and proper nouns
def capitalize_sentences_and_nouns(text):
    doc = nlp(text)
    corrected_text = []

    for sent in doc.sents:
        sentence = []
        for token in sent:
            if token.i == sent.start:  # First word of the sentence
                sentence.append(token.text.capitalize())
            elif token.pos_ == "PROPN":  # Proper noun
                sentence.append(token.text.capitalize())
            else:
                sentence.append(token.text)
        corrected_text.append(' '.join(sentence))

    return ' '.join(corrected_text)

# Paraphrasing function using SpaCy and NLTK
def paraphrase_with_spacy_nltk(text):
    doc = nlp(text)
    paraphrased_words = []
    
    for token in doc:
        # Map SpaCy POS tags to WordNet POS tags
        pos = None
        if token.pos_ in {"NOUN"}:
            pos = wordnet.NOUN
        elif token.pos_ in {"VERB"}:
            pos = wordnet.VERB
        elif token.pos_ in {"ADJ"}:
            pos = wordnet.ADJ
        elif token.pos_ in {"ADV"}:
            pos = wordnet.ADV
        
        synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
        
        # Replace with a synonym only if it makes sense
        if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"} and synonyms[0] != token.text.lower():
            paraphrased_words.append(synonyms[0])
        else:
            paraphrased_words.append(token.text)
    
    # Join the words back into a sentence
    paraphrased_sentence = ' '.join(paraphrased_words)
    
    # Capitalize sentences and proper nouns
    corrected_text = capitalize_sentences_and_nouns(paraphrased_sentence)
    
    return corrected_text

# Combined function: Paraphrase -> Capitalization
def paraphrase_and_correct(text):
    # Step 1: Paraphrase the text
    paraphrased_text = paraphrase_with_spacy_nltk(text)
    
    # Step 2: Capitalize sentences and proper nouns
    final_text = capitalize_sentences_and_nouns(paraphrased_text)
    
    return final_text

# Gradio interface definition
with gr.Blocks() as interface:
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(lines=5, label="Input Text")
            detect_button = gr.Button("AI Detection")
            paraphrase_button = gr.Button("Paraphrase & Correct")
        with gr.Column():
            output_text = gr.Textbox(label="Output")

    detect_button.click(detect_ai_generated, inputs=text_input, outputs=output_text)
    paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)

# Launch the Gradio app
interface.launch(debug=False)