Spaces:
Runtime error
Runtime error
File size: 3,098 Bytes
9918198 1b6e08f 456ec91 9918198 1f97769 456ec91 883f7e7 456ec91 75c1fd6 456ec91 1b6e08f 456ec91 1b6e08f 953debe 1b6e08f 953debe 1b6e08f 9918198 953debe 1b6e08f 953debe 1b6e08f 9918198 1b6e08f 9918198 1b6e08f 9918198 1b6e08f 456ec91 9918198 2829eb5 9918198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import os
import torch
import faiss
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
from datasets import load_dataset
import gradio as gr
# νκ²½ λ³μμμ Hugging Face API ν€ λ‘λ
hf_api_key = os.getenv('HF_API_KEY')
# λͺ¨λΈ ID λ° ν ν¬λμ΄μ μ€μ
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=hf_api_key)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=hf_api_key,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
)
# λ°μ΄ν° λ‘λ© λ° faiss μΈλ±μ€ μμ±
ST = SentenceTransformer("mixedbread-ai/mxbai-embed-large-v1")
dataset = load_dataset("not-lain/wikipedia", revision="embedded")
data = dataset["train"]
data = data.add_faiss_index("embeddings")
# κ²μ λ° μλ΅ μμ± ν¨μ
def search(query: str, k: int = 3):
embedded_query = ST.encode(query)
scores, retrieved_examples = data.get_nearest_examples("embeddings", embedded_query, k=k)
return scores, retrieved_examples
def format_prompt(prompt, retrieved_documents, k):
PROMPT = f"Question:{prompt}\nContext:"
for idx in range(k):
PROMPT += f"{retrieved_documents['text'][idx]}\n"
return PROMPT
def generate(formatted_prompt):
formatted_prompt = formatted_prompt[:2000] # GPU λ©λͺ¨λ¦¬ μ νμ κ³ λ €
messages = [{"role": "system", "content": SYS_PROMPT}, {"role": "user", "content": formatted_prompt}]
input_ids = tokenizer(messages, return_tensors="pt", padding=True).input_ids.to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=1024,
eos_token_id=tokenizer.eos_token_id,
do_sample=True,
temperature=0.6,
top_p=0.9
)
response = tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True)
return response
def rag_chatbot_interface(prompt: str, k: int = 2):
scores, retrieved_documents = search(prompt, k)
formatted_prompt = format_prompt(prompt, retrieved_documents, k)
return generate(formatted_prompt)
SYS_PROMPT = "You are an assistant for answering questions. You are given the extracted parts of a long document and a question. Provide a conversational answer. If you don't know the answer, just say 'I do not know.' Don't make up an answer."
# Gradio μΈν°νμ΄μ€ μ€μ
iface = gr.Interface(
fn=rag_chatbot_interface,
inputs=gr.inputs.Textbox(label="Enter your question"),
outputs=gr.outputs.Textbox(label="Answer"),
title="Retrieval-Augmented Generation Chatbot",
description="This is a chatbot that uses a retrieval-augmented generation approach to provide more accurate answers. It first searches for relevant documents and then generates a response based on the prompt and the retrieved documents."
)
iface.launch()
|