File size: 7,408 Bytes
7e55f18
a83fd3f
7e55f18
 
 
 
4cd347d
 
a83fd3f
7e55f18
4cd347d
 
a83fd3f
19ee9e7
a83fd3f
d1ff4dd
 
 
 
 
 
59203cf
 
 
d1ff4dd
 
5fe31e8
7e55f18
4cd347d
 
 
 
 
 
 
 
 
d1ff4dd
4cd347d
7e55f18
d1ff4dd
7e55f18
 
 
 
 
 
 
 
 
 
 
 
59203cf
 
7e55f18
 
 
 
 
 
 
 
 
 
 
 
 
60e8e0e
 
 
4cd347d
7e55f18
4cd347d
 
 
7e55f18
4cd347d
 
 
 
 
 
 
 
 
 
 
d1ff4dd
4cd347d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e55f18
4cd347d
 
 
 
7e55f18
4cd347d
 
 
 
 
 
 
 
 
a83fd3f
7e55f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fe31e8
 
 
 
7e55f18
 
4cd347d
7e55f18
5fe31e8
7e55f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a83fd3f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import spaces
import gradio as gr
from transformers import Trainer, TrainingArguments, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import DataCollatorForSeq2Seq
from datasets import load_dataset, concatenate_datasets, load_from_disk
import traceback
from sklearn.metrics import accuracy_score
import numpy as np

import os
from huggingface_hub import login
from peft import get_peft_model, LoraConfig

os.environ['HF_HOME'] = '/data/.huggingface'

lora_config = LoraConfig(
    r=16,  # Rank of the low-rank adaptation
    lora_alpha=32,  # Scaling factor
    lora_dropout=0.1,  # Dropout for LoRA layers
    bias="none"  # Bias handling
)
model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny', num_labels=2, force_download=True)
#model = get_peft_model(model, lora_config)
#model.gradient_checkpointing_enable()   

@spaces.GPU(duration=120)
def fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    try:
        def compute_metrics(eval_pred):
            logits, labels = eval_pred
            predictions = np.argmax(logits, axis=1)
            accuracy = accuracy_score(labels, predictions)
            return {
                'eval_accuracy': accuracy,
                'eval_loss': eval_pred.loss,  # If you want to include loss as well
            }        
        login(api_key.strip())
   
    
        # Load the model and tokenizer
             
        
    
        # Set training arguments
        training_args = TrainingArguments(
            output_dir='/data/results',
            eval_strategy="steps",  # Change this to steps
            save_strategy='steps',
            learning_rate=lr*0.00001,
            per_device_train_batch_size=int(batch_size),
            per_device_eval_batch_size=int(batch_size), 
            num_train_epochs=int(num_epochs),
            weight_decay=0.01,
            #gradient_accumulation_steps=int(grad),
            #max_grad_norm = 1.0, 
            load_best_model_at_end=True,
            metric_for_best_model="accuracy",
            greater_is_better=True,
            logging_dir='/data/logs',
            logging_steps=10,
            #push_to_hub=True,
            hub_model_id=hub_id.strip(),
            fp16=True,
            #lr_scheduler_type='cosine',
            save_steps=100,  # Save checkpoint every 500 steps
            save_total_limit=3, 
        )
        # Check if a checkpoint exists and load it
        if os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir):
            print("Loading model from checkpoint...")
            model = AutoModelForSeq2SeqLM.from_pretrained(training_args.output_dir)        
    
        max_length = 128
        try:
            tokenized_train_dataset = load_from_disk(f'/data/{hub_id.strip()}_train_dataset')
            tokenized_test_dataset = load_from_disk(f'/data/{hub_id.strip()}_test_dataset')
            
            # Create Trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=tokenized_train_dataset,
                eval_dataset=tokenized_test_dataset,
                compute_metrics=compute_metrics,
            )            
        except:
            # Load the dataset
            dataset = load_dataset(dataset_name.strip())
            tokenizer = AutoTokenizer.from_pretrained('google/t5-efficient-tiny-nh8')
            # Tokenize the dataset
            def tokenize_function(examples):
                
                # Assuming 'text' is the input and 'target' is the expected output
                model_inputs = tokenizer(
                    examples['text'], 
                    max_length=max_length,  # Set to None for dynamic padding
                    padding=True,     # Disable padding here, we will handle it later
                    truncation=True,
                )
            
                # Setup the decoder input IDs (shifted right)
                labels = tokenizer(
                    examples['target'], 
                    max_length=max_length,  # Set to None for dynamic padding
                    padding=True,     # Disable padding here, we will handle it later
                    truncation=True,
                    text_target=examples['target']  # Use text_target for target text
                )
            
                # Add labels to the model inputs
                model_inputs["labels"] = labels["input_ids"]
                return model_inputs
        
            tokenized_datasets = dataset.map(tokenize_function, batched=True)
            
            tokenized_datasets['train'].save_to_disk(f'/data/{hub_id.strip()}_train_dataset')
            tokenized_datasets['test'].save_to_disk(f'/data/{hub_id.strip()}_test_dataset')
        
            # Create Trainer
            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=tokenized_datasets['train'],
                eval_dataset=tokenized_datasets['test'],
                compute_metrics=compute_metrics,
                #callbacks=[LoggingCallback()], 
            )            

        # Fine-tune the model
        trainer.train()
        trainer.push_to_hub(commit_message="Training complete!")
    except Exception as e:
        return f"An error occurred: {str(e)}, TB: {traceback.format_exc()}"
    return 'DONE!'#model
'''
# Define Gradio interface
def predict(text):
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name.strip(), num_labels=2)
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(inputs)
    predictions = outputs.logits.argmax(dim=-1)
    return predictions.item()
'''

def run_train(dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad):
    result = fine_tune_model(model, dataset_name, hub_id, api_key, num_epochs, batch_size, lr, grad)
    return result
# Create Gradio interface
try:
    model = AutoModelForSeq2SeqLM.from_pretrained('google/t5-efficient-tiny-nh8'.strip(), num_labels=2, force_download=True)
    iface = gr.Interface(
        fn=run_train,
        inputs=[
            gr.Textbox(label="Dataset Name (e.g., 'imdb')"),
            gr.Textbox(label="HF hub to push to after training"),
            gr.Textbox(label="HF API token"),
            gr.Slider(minimum=1, maximum=10, value=3, label="Number of Epochs", step=1),
            gr.Slider(minimum=1, maximum=2000, value=1, label="Batch Size", step=1),
            gr.Slider(minimum=1, maximum=1000, value=1, label="Learning Rate (e-5)", step=1),
            gr.Slider(minimum=1, maximum=100, value=1, label="Gradient accumulation", step=1), 
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to fine-tune a Hugging Face model on a specified dataset."
    )
    '''
    iface = gr.Interface(
        fn=predict,
        inputs=[
            gr.Textbox(label="Query"),
        ],
        outputs="text",
        title="Fine-Tune Hugging Face Model",
        description="This interface allows you to test a fine-tune Hugging Face model."
    )
    '''
    # Launch the interface
    iface.launch()    
except Exception as e:
    print(f"An error occurred: {str(e)}, TB: {traceback.format_exc()}")