File size: 4,202 Bytes
59880dc
311419e
 
1cedc13
651dfe7
1cedc13
bc651cc
7cdacae
 
 
 
 
651dfe7
 
 
1cedc13
311419e
 
1cedc13
 
cd178d4
1cedc13
7cdacae
1cedc13
 
 
 
 
 
 
7cdacae
1cedc13
 
 
 
 
 
 
 
 
 
 
 
7cdacae
8895d65
7cdacae
1cedc13
 
bc651cc
 
 
 
 
 
 
 
 
 
 
7cdacae
311419e
651dfe7
311419e
 
8895d65
311419e
 
7cdacae
311419e
 
 
 
bc651cc
1cedc13
7cdacae
1cedc13
7cdacae
1cedc13
b2943a0
1cedc13
7c72554
 
 
 
1cedc13
7c72554
 
8895d65
 
 
 
 
bc651cc
8895d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
651dfe7
1cedc13
651dfe7
7cdacae
651dfe7
1cedc13
cd178d4
c360cac
651dfe7
1cedc13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import spaces  # 必须放在最前面
import os
import numpy as np
import torch
from PIL import Image
import gradio as gr
from gradio_imageslider import ImageSlider  # 导入 gradio_imageslider

# 延迟 CUDA 初始化
weight_dtype = torch.float32

# 加载模型组件
from DAI.pipeline_all import DAIPipeline
from DAI.controlnetvae import ControlNetVAEModel
from DAI.decoder import CustomAutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel, AutoTokenizer

pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 加载模型
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device)
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False)

# 创建推理管道
pipe = DAIPipeline(
    vae=vae,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    unet=unet,
    controlnet=controlnet,
    safety_checker=None,
    scheduler=None,
    feature_extractor=None,
    t_start=0,
).to(device)

@spaces.GPU
def process_image(input_image):
    # 将 Gradio 输入转换为 PIL 图像
    input_image = Image.fromarray(input_image)

    # 调整输入图像的最大边为 768
    width, height = input_image.size
    max_size = 768
    if width > height:
        new_width = max_size
        new_height = int(height * (max_size / width))
    else:
        new_height = max_size
        new_width = int(width * (max_size / height))
    resized_input_image = input_image.resize((new_width, new_height), Image.LANCZOS)

    # 处理图像
    pipe_out = pipe(
        image=input_image,
        prompt="remove glass reflection",
        vae_2=vae_2,
        processing_resolution=None,
    )

    # 将输出转换为图像
    processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
    processed_frame = (processed_frame[0] * 255).astype(np.uint8)
    processed_frame = Image.fromarray(processed_frame)

    return resized_input_image, processed_frame

# 创建 Gradio 界面
def create_gradio_interface():
    # 示例图像
    example_images = [
        os.path.join("files", "image", f"{i}.png") for i in range(1, 14)
    ]
    title = "# Dereflection Any Image"
    description = """Official demo for **Dereflection Any Image**.
    Please refer to our [paper](), [project page](https://abuuu122.github.io/DAI.github.io/), and [github](https://github.com/Abuuu122/Dereflection-Any-Image) for more details."""

    with gr.Blocks() as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="numpy")
                submit_btn = gr.Button("Remove Reflection", variant="primary")
            with gr.Column():
                output_image = ImageSlider(label="Processed Image")  # 使用 ImageSlider

        # 添加示例
        gr.Examples(
            examples=example_images,
            inputs=input_image,
            outputs=output_image,
            fn=process_image,
            cache_examples=False,  # 缓存结果以加快加载速度
            label="Example Images",
        )

        # 绑定按钮点击事件
        submit_btn.click(
            fn=process_image,
            inputs=input_image,
            outputs=output_image,
        )

    return demo

# 主函数
def main():
    demo = create_gradio_interface()
    demo.launch(server_name="0.0.0.0", server_port=7860)

if __name__ == "__main__":
    main()