Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,420 Bytes
59880dc 311419e 1cedc13 651dfe7 1cedc13 7cdacae 651dfe7 1cedc13 311419e 1cedc13 cd178d4 1cedc13 7cdacae 1cedc13 7cdacae 1cedc13 7cdacae c9620cb 7cdacae 1cedc13 c9620cb a41990b c9620cb a41990b 7cdacae 311419e 651dfe7 311419e c9620cb 311419e 7cdacae 311419e 30a2134 1cedc13 7cdacae 1cedc13 7cdacae 1cedc13 c9620cb 1cedc13 7c72554 1cedc13 7c72554 8895d65 c9620cb 8895d65 30a2134 8895d65 c9620cb 8895d65 c9620cb 8895d65 651dfe7 1cedc13 651dfe7 7cdacae 651dfe7 1cedc13 cd178d4 c360cac 651dfe7 1cedc13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import spaces # 必须放在最前面
import os
import numpy as np
import torch
from PIL import Image
import gradio as gr
# 延迟 CUDA 初始化
weight_dtype = torch.float32
# 加载模型组件
from DAI.pipeline_all import DAIPipeline
from DAI.controlnetvae import ControlNetVAEModel
from DAI.decoder import CustomAutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel, AutoTokenizer
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device)
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False)
# 创建推理管道
pipe = DAIPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
safety_checker=None,
scheduler=None,
feature_extractor=None,
t_start=0,
).to(device)
@spaces.GPU
def process_image(input_image, resolution_choice):
# 将 Gradio 输入转换为 PIL 图像
input_image = Image.fromarray(input_image)
# 根据用户选择设置处理分辨率
if resolution_choice == "768":
processing_resolution = None
else:
processing_resolution = 0 # 使用原始分辨率
# 处理图像
pipe_out = pipe(
image=input_image,
prompt="remove glass reflection",
vae_2=vae_2,
processing_resolution=processing_resolution,
)
# 将输出转换为图像
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
processed_frame = Image.fromarray(processed_frame)
return processed_frame
# 创建 Gradio 界面
def create_gradio_interface():
# 示例图像
example_images = [
[os.path.join("files", "image", f"{i}.png"), "768"] for i in range(1, 14)
]
title = "# Dereflection Any Image"
description = """Official demo for **Dereflection Any Image**.
Please refer to our [paper](), [project page](https://abuuu122.github.io/DAI.github.io/), and [github](https://github.com/Abuuu122/Dereflection-Any-Image) for more details."""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="numpy")
resolution_choice = gr.Radio(
choices=["768", "Original Resolution"],
label="Processing Resolution",
value="768", # 默认选择原始分辨率
)
gr.Markdown(
"Select the resolution for processing the image. Higher resolution may take longer to process."
)
submit_btn = gr.Button("Remove Reflection", variant="primary")
with gr.Column():
output_image = gr.Image(label="Processed Image")
# 添加示例
gr.Examples(
examples=example_images,
inputs=[input_image, resolution_choice], # 输入组件列表
outputs=output_image,
fn=process_image,
cache_examples=False, # 缓存结果以加快加载速度
label="Example Images",
)
# 绑定按钮点击事件
submit_btn.click(
fn=process_image,
inputs=[input_image, resolution_choice], # 输入组件列表
outputs=output_image,
)
return demo
# 主函数
def main():
demo = create_gradio_interface()
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main() |