Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,400 Bytes
7d1a82d 311419e 1cedc13 651dfe7 1cedc13 7cdacae 651dfe7 1cedc13 311419e 1cedc13 cd178d4 1cedc13 7cdacae 1cedc13 7cdacae 1cedc13 7cdacae 1cedc13 7cdacae 1cedc13 7cdacae 311419e 651dfe7 311419e 1cedc13 311419e 7cdacae 311419e cd178d4 1cedc13 7cdacae 1cedc13 7cdacae 1cedc13 cd178d4 1cedc13 7cdacae 1cedc13 cd178d4 1cedc13 c45eb57 1cedc13 651dfe7 7cdacae 1cedc13 cd178d4 651dfe7 1cedc13 651dfe7 7cdacae 651dfe7 1cedc13 cd178d4 c360cac 651dfe7 1cedc13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
import spaces # 必须放在最前面
import os
import numpy as np
import torch
from PIL import Image
import gradio as gr
# 延迟 CUDA 初始化
weight_dtype = torch.float32
# 加载模型组件
from DAI.pipeline_all import DAIPipeline
from DAI.controlnetvae import ControlNetVAEModel
from DAI.decoder import CustomAutoencoderKL
from diffusers import AutoencoderKL, UNet2DConditionModel
from transformers import CLIPTextModel, AutoTokenizer
pretrained_model_name_or_path = "sjtu-deepvision/dereflection-any-image-v0"
pretrained_model_name_or_path2 = "stabilityai/stable-diffusion-2-1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 加载模型
controlnet = ControlNetVAEModel.from_pretrained(pretrained_model_name_or_path, subfolder="controlnet", torch_dtype=weight_dtype).to(device)
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet", torch_dtype=weight_dtype).to(device)
vae_2 = CustomAutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae_2", torch_dtype=weight_dtype).to(device)
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path2, subfolder="vae").to(device)
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path2, subfolder="text_encoder").to(device)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path2, subfolder="tokenizer", use_fast=False)
# 创建推理管道
pipe = DAIPipeline(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
controlnet=controlnet,
safety_checker=None,
scheduler=None,
feature_extractor=None,
t_start=0,
).to(device)
@spaces.GPU
def process_image(input_image):
# 将 Gradio 输入转换为 PIL 图像
input_image = Image.fromarray(input_image)
# 处理图像
pipe_out = pipe(
image=input_image,
prompt="remove glass reflection",
vae_2=vae_2,
processing_resolution=None,
)
# 将输出转换为图像
processed_frame = (pipe_out.prediction.clip(-1, 1) + 1) / 2
processed_frame = (processed_frame[0] * 255).astype(np.uint8)
processed_frame = Image.fromarray(processed_frame)
return processed_frame
# 创建 Gradio 界面
def create_gradio_interface():
# 示例图像
example_images = [
os.path.join("files", "image", f"{i}.png") for i in range(1, 9)
]
with gr.Blocks() as demo:
gr.Markdown("# Dereflection Any Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="numpy")
submit_btn = gr.Button("Remove Reflection", variant="primary")
with gr.Column():
output_image = gr.Image(label="Processed Image")
# 添加示例
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=output_image,
fn=process_image,
cache_examples=False, # 缓存结果以加快加载速度
label="Example Images",
)
# 绑定按钮点击事件
submit_btn.click(
fn=process_image,
inputs=input_image,
outputs=output_image,
)
return demo
# 主函数
def main():
demo = create_gradio_interface()
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
main() |