Spaces:
Sleeping
Sleeping
File size: 8,126 Bytes
b1f21a7 fcf19e3 b1f21a7 3f4d361 b1f21a7 0b9ad90 b1f21a7 0b9ad90 b0bb9db 0b9ad90 5c562da 0b9ad90 5559590 0b9ad90 b1f21a7 3f4d361 b1f21a7 5c562da b1f21a7 b0bb9db b1f21a7 f9616f0 b1f21a7 3f4d361 b1f21a7 3f4d361 b1f21a7 5c562da b1f21a7 e2cefa5 b1f21a7 3f4d361 b1f21a7 f6230c6 b1f21a7 cabb6d5 3f4d361 cabb6d5 f6230c6 b1f21a7 f6230c6 b1f21a7 f6230c6 b1f21a7 e2cefa5 b1f21a7 e2cefa5 b1f21a7 e2cefa5 b1f21a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import streamlit as st
import streamlit.components.v1 as components
import pandas as pd
import os
import re
import numpy as np
from glob import glob
import lightgbm as lgb
os.environ['S3_BUCKET'] = "seriouslytestfaces"
import io
def get_s3_url(key):
url = 'https://s3.amazonaws.com/%s/%s' % (os.environ['S3_BUCKET'],key.replace(' ','+'))
return url
embeddings = pd.read_parquet('./embeddings.parquet')
def create_dir(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def setup_user():
create_dir(f'./users/{st.session_state.name}')
create_dir(f'./users/{st.session_state.name}/likes')
create_dir(f'./users/{st.session_state.name}/models')
if 'count' not in st.session_state:
st.session_state.count = 0
st.session_state.neg = 0
st.session_state.pos = 0
import requests
def check_image_url_accessible(url):
try:
# Send a HEAD request to save bandwidth
response = requests.head(url, allow_redirects=True, timeout=5)
# If the HEAD request fails, fallback to GET request
if response.status_code != 200:
response = requests.get(url, stream=True, timeout=5)
# Check the status code
if response.status_code == 200:
# Verify if it's an image
content_type = response.headers.get("Content-Type", "")
if "image" in content_type:
return True
else:
return False
else:
return False
except requests.RequestException:
return False
def get_filename():
if 'preds' in st.session_state:
p = st.session_state.preds**4
p /= sum(p)
choice = np.random.choice(range(len(p)),p=p)
st.session_state.pred = st.session_state.preds[choice]
url = get_s3_url(embeddings.index[choice])
if check_image_url_accessible(url):
return embeddings.index[choice]
else:
return get_filename()
# st.toast('Random for now')
choice = np.random.choice(embeddings.index)
url = get_s3_url(choice)
if check_image_url_accessible(url):
return choice
else:
return get_filename()
st.title('What does attractive mean to you?')
st.session_state.name = st.text_input(label='Invent a unique alias (and remember it)')
def liked(filename,like):
filename = f'./users/{st.session_state.name}/likes/' + filename.split('/')[-1] + '.' + str(like)[:1]
open(filename, 'a').close()
st.session_state.count += 1
if like:
st.session_state.pos += 1
else:
st.session_state.neg += 1
def get_train_data():
clean = lambda file : file.replace('\\','/').split('/')[-1][:-2]
true_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.T')))
false_files = list(map(clean,glob(f'./users/{st.session_state.name}/likes/*.F')))
true_embeddings = embeddings.loc[true_files].values
false_embeddings = embeddings.loc[false_files].values
# st.toast(f'Found {len(true_files)} positives and {len(false_files)} negatives')
labels = np.array([1 for _ in true_embeddings] + [0 for _ in false_embeddings])
st.session_state.labels = pd.Series(labels,index=true_files+false_files).rename('label')
X = np.vstack([true_embeddings,false_embeddings])
return X,labels
def train_model(X,labels):
if len(labels) < 30:
st.toast('Not enough data')
return
if labels.mean() > 0.9:
st.toast('Not enough negatives')
return
if labels.mean() < 0.1:
st.toast('Not enough positives')
return
train_data = lgb.Dataset(X, label=labels)
num_round = 10
param = {'num_leaves': 30, 'objective': 'binary', 'metric' : 'binary'}
bst = lgb.train(param, train_data, num_round)
in_sample_preds = bst.predict(X)
in_sample_score = np.corrcoef([in_sample_preds,np.array(labels)])[0][1]
st.session_state.score = in_sample_score
st.toast(f'Score = {in_sample_score:.1%}')
return bst
def rank_candidates(bst):
return bst.predict(embeddings.values)
def train():
X,labels = get_train_data()
bst = train_model(X,labels)
if bst is None:
return
filename = f'./users/{st.session_state.name}/models/model.txt'
bst.save_model(filename)
preds = rank_candidates(bst)
st.session_state.preds = preds
st.balloons()
def cleanup():
files = glob(f'./users/{st.session_state.name}/likes/*')
for f in files:
os.remove(f)
for var in 'preds pred count pos neg'.split():
if var in st.session_state:
del st.session_state[var]
st.session_state.count = 0
st.session_state.neg = 0
st.session_state.pos = 0
def get_extremes(n=4):
if 'preds' in st.session_state:
preds = pd.Series(st.session_state.preds,index=embeddings.index).sort_values(ascending=False)
return preds.iloc[:n].to_dict(),preds.iloc[-n:].to_dict()
def get_strange(n=4):
if 'labels' in st.session_state:
labels = st.session_state.labels
preds = pd.Series(st.session_state.preds,index=embeddings.index).loc[labels.index].rename('pred')
data = pd.concat([labels, preds],axis=1)
# st.toast(data.columns)
data['diff'] = data['pred'] - data['label']
data = data.sort_values('diff',ascending=False)['diff']
surprising_dislikes = data.iloc[:n].to_dict()
surprising_likes = data.iloc[-n:].to_dict()
return surprising_dislikes,surprising_likes
if st.session_state.name:
st.session_state.name = re.sub(r'[^A-Za-z0-9 ]+', '', st.session_state.name)[:100]
setup_user()
st.subheader(f"Let's start {st.session_state.name}")
c1,c2 = st.columns(2)
my_bar = c1.progress(min(st.session_state.count/40,1.))
p_liked = (st.session_state.pos / st.session_state.count) if st.session_state.count else 0
c2.metric('%age liked so far',f'{p_liked:.1%}')
filename = get_filename()
cc1, cc2 = st.columns(2)
c1,c2 = cc1.columns(2)
c1.button('Why not', on_click=liked, args=[filename,True])
c2.button('Nope', on_click=liked, args=[filename,False])
key = get_s3_url(filename)
cc1.image(key, width = 400)
c1,c2 = cc2.columns(2)
if st.session_state.count>40 and st.session_state.pos > 5 and st.session_state.neg > 5:
c1.button('Train',on_click=train,args=[])
if st.session_state.count == 41:
st.balloons()
st.toast('Ready for training')
c2.button('Start over',on_click=cleanup,args=[])
if 'preds' in st.session_state:
cc1.write('Here is our guess')
c1,c2 = cc1.columns(2)
c1.metric("Probability you will like", f'{st.session_state.pred:.1%}')
c2.metric("Overall model accuracy", f'{st.session_state.score:.0%}')
best,worst = get_extremes()
cc2.subheader('Predicted best')
cs = cc2.columns(len(best))
for c,(file,pred) in zip(cs,best.items()):
c.metric("", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc2.subheader('Predicted worst')
cs = cc2.columns(len(worst))
for c,(file,pred) in zip(cs,worst.items()):
c.metric("", f'{pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc1.subheader('Where you confused me')
surprising_dislikes,surprising_likes = get_strange()
cc1.write("You didn't like my picks")
cs = cc1.columns(len(surprising_dislikes))
for c,(file,pred) in zip(cs,surprising_dislikes.items()):
c.metric("", "",f'{-pred:.0%}')
c.image(get_s3_url(file), width = 100)
cc1.write("You liked these more than I thought")
cs = cc1.columns(len(surprising_likes))
for c,(file,pred) in zip(cs,surprising_likes.items()):
c.metric("","", f'{-pred:.0%}')
c.image(get_s3_url(file), width = 100)
|