File size: 4,304 Bytes
882e052
c8f1f54
4fe456a
61b9893
df1e443
 
c8f1f54
61b9893
df1e443
882e052
df1e443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8f1f54
61b9893
df1e443
61b9893
882e052
5d4b17c
61b9893
 
 
 
 
 
 
9aeab3c
61b9893
 
 
 
 
 
 
 
 
 
 
 
 
df1e443
c8f1f54
61b9893
882e052
 
087c578
 
df1e443
 
 
 
 
 
 
 
 
 
 
61b9893
df1e443
 
 
 
61b9893
 
 
 
 
 
 
faa166e
e3617aa
61b9893
882e052
61b9893
df1e443
882e052
 
 
61b9893
882e052
faa166e
61b9893
 
 
882e052
61b9893
 
 
087c578
 
 
61b9893
 
 
087c578
5d4b17c
087c578
 
61b9893
087c578
dc45b2e
5d4b17c
61b9893
 
087c578
 
 
5d4b17c
882e052
 
 
 
 
61b9893
 
 
 
 
 
087c578
882e052
c8f1f54
 
61b9893
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import io
import torch
from diffusers import DiffusionPipeline

# ===== CONFIGURATION =====
MODEL_NAME = "HiDream-ai/HiDream-I1-Full"
WATERMARK_TEXT = "SelamGPT"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
TORCH_DTYPE = torch.float16 if DEVICE == "cuda" else torch.float32

# ===== MODEL LOADING =====
@gr.Cache()  # Cache model between generations
def load_model():
    pipe = DiffusionPipeline.from_pretrained(
        MODEL_NAME,
        torch_dtype=TORCH_DTYPE
    ).to(DEVICE)
    
    # Optimizations
    if DEVICE == "cuda":
        pipe.enable_xformers_memory_efficient_attention()
        pipe.enable_attention_slicing()
    
    return pipe

pipe = load_model()

# ===== WATERMARK FUNCTION =====
def add_watermark(image):
    """Add watermark with optimized PNG output"""
    try:
        draw = ImageDraw.Draw(image)
        
        font_size = 24
        try:
            font = ImageFont.truetype("Roboto-Bold.ttf", font_size)
        except:
            font = ImageFont.load_default(font_size)
        
        text_width = draw.textlength(WATERMARK_TEXT, font=font)
        x = image.width - text_width - 10
        y = image.height - 34
        
        draw.text((x+1, y+1), WATERMARK_TEXT, font=font, fill=(0, 0, 0, 128))
        draw.text((x, y), WATERMARK_TEXT, font=font, fill=(255, 255, 255))
        
        # Convert to optimized PNG
        img_byte_arr = io.BytesIO()
        image.save(img_byte_arr, format='PNG', optimize=True, quality=85)
        img_byte_arr.seek(0)
        return Image.open(img_byte_arr)
    except Exception as e:
        print(f"Watermark error: {str(e)}")
        return image

# ===== IMAGE GENERATION =====
def generate_image(prompt):
    if not prompt.strip():
        return None, "⚠️ Please enter a prompt"
    
    try:
        # Generate image (1024x1024 by default)
        image = pipe(
            prompt,
            num_inference_steps=30,
            guidance_scale=7.5
        ).images[0]
        
        # Add watermark
        watermarked = add_watermark(image)
        return watermarked, "✔️ Generation successful"
    
    except torch.cuda.OutOfMemoryError:
        return None, "⚠️ Out of memory! Try a simpler prompt"
    except Exception as e:
        return None, f"⚠️ Error: {str(e)[:200]}"

# ===== GRADIO THEME =====
theme = gr.themes.Default(
    primary_hue="emerald",
    secondary_hue="amber",
    font=[gr.themes.GoogleFont("Poppins"), "Arial", "sans-serif"]
)

# ===== GRADIO INTERFACE =====
with gr.Blocks(theme=theme, title="SelamGPT Image Generator") as demo:
    gr.Markdown("""
    # 🎨 SelamGPT Image Generator
    *Powered by HiDream-I1-Full (1024x1024 PNG output)*
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            prompt_input = gr.Textbox(
                label="Describe your image",
                placeholder="A futuristic Ethiopian city with flying cars...",
                lines=3,
                max_lines=5
            )
            with gr.Row():
                generate_btn = gr.Button("Generate Image", variant="primary")
                clear_btn = gr.Button("Clear")
            
            gr.Examples(
                examples=[
                    ["An ancient Aksumite warrior in cyberpunk armor, 4k detailed"],
                    ["Traditional Ethiopian coffee ceremony in zero gravity"],
                    ["Portrait of a Habesha queen with golden jewelry"]
                ],
                inputs=prompt_input
            )
            
        with gr.Column(scale=2):
            output_image = gr.Image(
                label="Generated Image",
                type="pil",
                format="png",
                height=512
            )
            status_output = gr.Textbox(
                label="Status",
                interactive=False
            )
    
    generate_btn.click(
        fn=generate_image,
        inputs=prompt_input,
        outputs=[output_image, status_output],
        queue=True
    )
    
    clear_btn.click(
        fn=lambda: [None, ""],
        outputs=[output_image, status_output]
    )

if __name__ == "__main__":
    demo.queue(max_size=2)
    demo.launch(server_name="0.0.0.0", server_port=7860)