File size: 1,551 Bytes
d10f466
 
bebfcb3
 
d10f466
4cbee43
69c84d2
d10f466
bebfcb3
 
 
 
d10f466
bebfcb3
 
 
 
 
bf51623
bebfcb3
 
 
 
bf51623
bebfcb3
 
bf51623
bebfcb3
 
 
bf51623
bebfcb3
 
 
 
 
 
 
 
 
 
 
 
bf51623
d10f466
 
bebfcb3
 
 
d10f466
bebfcb3
d10f466
 
bebfcb3
d10f466
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import torch
import torchvision.transforms as transforms
from torchvision.models.detection import detr
from PIL import Image
import cv2
import numpy as np

# Load the pretrained DETR model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = detr.DETR(resnet50=True)
model = model.to(device).eval()

# Define the transformation for the input image
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Resize((800, 800)),
])

# Define the object detection function
def detect_objects(frame):
    # Convert the frame to PIL image
    image = Image.fromarray(frame)

    # Apply the transformation
    image = transform(image).unsqueeze(0).to(device)

    # Perform object detection
    with torch.no_grad():
        outputs = model(image)

    # Get the bounding boxes and labels
    boxes = outputs['pred_boxes'][0].cpu().numpy()
    labels = outputs['pred_classes'][0].cpu().numpy()

    # Draw bounding boxes on the frame
    for box, label in zip(boxes, labels):
        box = [int(coord) for coord in box]
        frame = cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
        frame = cv2.putText(frame, f'Class: {label}', (box[0], box[1] - 10),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2, cv2.LINE_AA)

    return frame

# Define the Gradio interface
iface = gr.Interface(
    fn=detect_objects,
    inputs=gr.Video(),
    outputs="video",
    live=True,
    capture_session=True,
)

# Launch the Gradio app
iface.launch()