File size: 10,711 Bytes
e46c16c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ed4acb
74dec5e
 
 
 
816fe7b
1ed4acb
45af05b
 
 
22d404b
 
6a50739
ab9c147
74dec5e
 
 
 
 
1ed4acb
74dec5e
 
 
 
 
 
 
 
dde5004
 
 
 
e46c16c
b019779
d3fd89d
f3e1197
 
 
 
 
 
381e9cd
f3e1197
 
f074365
f3e1197
 
 
 
7c817a1
f3e1197
7c817a1
f3e1197
 
 
 
e46c16c
85185f1
f3e1197
 
 
 
 
 
 
 
 
 
 
 
9469195
 
e46c16c
f3e1197
3f45d48
95e085e
 
f3e1197
95e085e
 
 
 
 
 
 
 
 
 
 
 
 
3f45d48
 
 
f3e1197
 
 
 
 
 
 
 
 
 
e46c16c
 
f3e1197
 
 
7f5102c
 
 
f3e1197
381e9cd
e46c16c
ab9c147
 
 
 
 
7c817a1
4b58467
e46c16c
 
381e9cd
ab9c147
381e9cd
b019779
7c817a1
e46c16c
f3e1197
 
 
3c31877
 
e46c16c
b77b847
f3e1197
d30e80d
 
 
d4e098f
 
74dec5e
 
b80583c
 
1bba452
74dec5e
1688328
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import time
# import os

# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# data = None
# model = None
# image = None
# prediction = None
# labels = None

# print('START')
# np.set_printoptions(suppress=True)

# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

# with open("labels.txt", "r") as file:
#     labels = file.read().splitlines()

# def classify(Textbox, Image, Textbox2, Textbox3):
#     if Textbox3 == code:
#         if Image is not None:
#             output = []
#             image_data = np.array(Image)
#             image_data = cv.resize(image_data, (224, 224))
#             image_array = np.asarray(image_data)
#             normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
#             data[0] = normalized_image_array
        
#             import tensorflow as tf
#             model = tf.keras.models.load_model('keras_model.h5')
        
#             prediction = model.predict(data)
            
#             max_label_index = None
#             max_prediction_value = -1
    
#             print('Prediction')
    
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(Textbox)
#             messages = [
#                 {"role": "system", "content": system},
#             ]
#             print("Messages",messages)
            
#             # for i in Textbox2_edited:
#             #     messages.append(
#             #         {"role": "user", "content": i}
#             #     )
#             print("messages after appending:", messages)
        
#             for i, label in enumerate(labels):
#                 prediction_value = float(prediction[0][i])
#                 rounded_value = round(prediction_value, 2)
#                 print(f'{label}: {rounded_value}')
        
#                 if prediction_value > max_prediction_value:
#                     max_label_index = i
#                     max_prediction_value = prediction_value 
        
#             if max_label_index is not None:
#                 max_label = labels[max_label_index].split(' ', 1)[1]
#                 print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
        
#                 time.sleep(1)
#                 print("\nWays to dispose of this waste: " + max_label)
#                 messages.append({"role": "user", "content": Textbox})
#                 messages.append({"role": "user", "content": content + " " + max_label})
    
#                 headers = {
#                     "Content-Type": "application/json",
#                     "Authorization": f"Bearer {auth}"
#                 }
        
#                 response = requests.post(host, headers=headers, json={
#                     "messages":messages,
#                     "model":model_llm
#                 }).json()
                
#                 reply = response["choices"][0]["message"]["content"]
#                 messages.append({"role": "assistant", "content": reply})
    
#                 output.append({"Mode":"Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
            
#             return output

#         else:
#             output = []
            
#             Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
#             Textbox2 = Textbox2.split(",")
#             Textbox2_edited = [x.strip() for x in Textbox2]
#             Textbox2_edited = list(Textbox2_edited)
#             Textbox2_edited.append(Textbox)
#             messages = [
#                 {"role": "system", "content": system},
#             ]
#             print("Messages",messages)
            
#             for i in Textbox2_edited:
#                 messages.append(
#                     {"role": "user", "content": i}
#                 )
#             print("messages after appending:", messages)
        
#             time.sleep(1)
#             messages.append({"role": "user", "content": Textbox})

#             headers = {
#                 "Content-Type": "application/json",
#                 "Authorization": f"Bearer {auth}"
#             }
    
#             response = requests.post(host, headers=headers, json={
#                 "messages":messages,
#                 "model":model_llm
#             }).json()
            
#             reply = response["choices"][0]["message"]["content"]
#             messages.append({"role": "assistant", "content": reply})

#             output.append({"Mode":"Chat","content": reply})
            
#             return output

#     else:
#         return "Unauthorized"
        
# user_inputs = [
#     gr.Textbox(label="User Input", type="text"),
#     gr.Image(),
#     gr.Textbox(label="Textbox2", type="text"),
#     gr.Textbox(label="Textbox3", type="password")
# ]

# iface = gr.Interface(
#     fn=classify,
#     inputs=user_inputs,
#     outputs=gr.outputs.JSON(),
#     title="Classifier",
# )
# iface.launch()


import gradio as gr
import numpy as np
import cv2 as cv
import requests
import time
import os

host = os.environ.get("host")
code = os.environ.get("code")
model_llm = os.environ.get("model")
content = os.environ.get("content")
state = os.environ.get("state")
system = os.environ.get("system")
auth = os.environ.get("auth")
data = None
model = None
image = None
prediction = None
labels = None

print('START')
np.set_printoptions(suppress=True)

data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)

with open("labels.txt", "r") as file:
    labels = file.read().splitlines()

messages = [
    {"role": "system", "content": system}
]

def classify(UserInput, Image, Textbox2, Textbox3):
    if Textbox3 == code:
        if Image is not None:
            output = []
            image_data = np.array(Image)
            image_data = cv.resize(image_data, (224, 224))
            image_array = np.asarray(image_data)
            normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
            data[0] = normalized_image_array
        
            import tensorflow as tf
            model = tf.keras.models.load_model('keras_model.h5')
        
            prediction = model.predict(data)
            
            max_label_index = None
            max_prediction_value = -1
    
            print('Prediction')
    
            Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
            Textbox2 = Textbox2.split(",")
            Textbox2_edited = [x.strip() for x in Textbox2]
            Textbox2_edited = list(Textbox2_edited)
            Textbox2_edited.append(UserInput)
            messages.append({"role": "user", "content": UserInput})
        
            for i, label in enumerate(labels):
                prediction_value = float(prediction[0][i])
                rounded_value = round(prediction_value, 2)
                print(f'{label}: {rounded_value}')
        
                if prediction_value > max_prediction_value:
                    max_label_index = i
                    max_prediction_value = prediction_value 
        
            if max_label_index is not None:
                max_label = labels[max_label_index].split(' ', 1)[1]
                max_rounded_prediction = round(max_prediction_value, 2)
                print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
    
                time.sleep(1)
                if max_rounded_prediction > 0.5:
                    print("\nWays to dispose of this waste: " + max_label)
                    messages.append({"role": "user", "content": content + " " + max_label})
        
                    headers = {
                        "Content-Type": "application/json",
                        "Authorization": f"Bearer {auth}"
                    }
            
                    response = requests.post(host, headers=headers, json={
                        "messages": messages,
                        "model": model_llm
                    }).json()
                    
                    reply = response["choices"][0]["message"]["content"]
                    messages.append({"role": "assistant", "content": reply})
                    
                    output.append({"Mode": "Image", "type": max_label, "prediction_value": max_rounded_prediction, "content": reply})
                elif max_rounded_prediction < 0.5:
                    output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": max_rounded_prediction, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
            
            return output

        else:
            output = []
            
            Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
            Textbox2 = Textbox2.split(",")
            Textbox2_edited = [x.strip() for x in Textbox2]
            Textbox2_edited = list(Textbox2_edited)
            Textbox2_edited.append(UserInput)
        
            for i in Textbox2_edited:
                messages.append(
                    {"role": "user", "content": i}
            )
            
            print("messages after appending:", messages)
        
            time.sleep(1)
            messages.append({"role": "user", "content": UserInput})

            headers = {
                "Content-Type": "application/json",
                "Authorization": f"Bearer {auth}"
            }
    
            response = requests.post(host, headers=headers, json={
                "messages": messages,
                "model": model_llm
            }).json()
            
            reply = response["choices"][0]["message"]["content"]
            messages.append({"role": "assistant", "content": reply})

            output.append({"Mode": "Chat", "content": reply})
            
            return output

    else:
        return "Unauthorized"

user_inputs = [
    gr.Textbox(label="User Input", type="text"),
    gr.Image(),
    gr.Textbox(label="Textbox2", type="text"),
    gr.Textbox(label="Textbox3", type="password")
]

iface = gr.Interface(
    fn=classify,
    inputs=user_inputs,
    outputs=gr.outputs.JSON(),
    title="Classifier",
)
iface.launch()