Spaces:
Running
Running
File size: 10,675 Bytes
e46c16c 1ed4acb 74dec5e 816fe7b 1ed4acb 45af05b 22d404b 6a50739 ab9c147 74dec5e 1ed4acb 74dec5e dde5004 e46c16c b019779 d3fd89d f3e1197 381e9cd f3e1197 f074365 f3e1197 7c817a1 f3e1197 7c817a1 f3e1197 e46c16c 85185f1 f3e1197 9469195 e46c16c f3e1197 9469195 95e085e f3e1197 95e085e 9469195 95e085e f3e1197 e46c16c f3e1197 7f5102c f3e1197 381e9cd e46c16c ab9c147 7c817a1 4b58467 e46c16c 381e9cd ab9c147 381e9cd b019779 7c817a1 e46c16c f3e1197 3c31877 e46c16c b77b847 f3e1197 d30e80d d4e098f 74dec5e b80583c 1bba452 74dec5e 1688328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# import gradio as gr
# import numpy as np
# import cv2 as cv
# import requests
# import time
# import os
# host = os.environ.get("host")
# code = os.environ.get("code")
# model_llm = os.environ.get("model")
# content = os.environ.get("content")
# state = os.environ.get("state")
# system = os.environ.get("system")
# auth = os.environ.get("auth")
# data = None
# model = None
# image = None
# prediction = None
# labels = None
# print('START')
# np.set_printoptions(suppress=True)
# data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
# with open("labels.txt", "r") as file:
# labels = file.read().splitlines()
# def classify(Textbox, Image, Textbox2, Textbox3):
# if Textbox3 == code:
# if Image is not None:
# output = []
# image_data = np.array(Image)
# image_data = cv.resize(image_data, (224, 224))
# image_array = np.asarray(image_data)
# normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
# data[0] = normalized_image_array
# import tensorflow as tf
# model = tf.keras.models.load_model('keras_model.h5')
# prediction = model.predict(data)
# max_label_index = None
# max_prediction_value = -1
# print('Prediction')
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(Textbox)
# messages = [
# {"role": "system", "content": system},
# ]
# print("Messages",messages)
# # for i in Textbox2_edited:
# # messages.append(
# # {"role": "user", "content": i}
# # )
# print("messages after appending:", messages)
# for i, label in enumerate(labels):
# prediction_value = float(prediction[0][i])
# rounded_value = round(prediction_value, 2)
# print(f'{label}: {rounded_value}')
# if prediction_value > max_prediction_value:
# max_label_index = i
# max_prediction_value = prediction_value
# if max_label_index is not None:
# max_label = labels[max_label_index].split(' ', 1)[1]
# print(f'Maximum Prediction: {max_label} with a value of {round(max_prediction_value, 2)}')
# time.sleep(1)
# print("\nWays to dispose of this waste: " + max_label)
# messages.append({"role": "user", "content": Textbox})
# messages.append({"role": "user", "content": content + " " + max_label})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages":messages,
# "model":model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# messages.append({"role": "assistant", "content": reply})
# output.append({"Mode":"Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
# return output
# else:
# output = []
# Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
# Textbox2 = Textbox2.split(",")
# Textbox2_edited = [x.strip() for x in Textbox2]
# Textbox2_edited = list(Textbox2_edited)
# Textbox2_edited.append(Textbox)
# messages = [
# {"role": "system", "content": system},
# ]
# print("Messages",messages)
# for i in Textbox2_edited:
# messages.append(
# {"role": "user", "content": i}
# )
# print("messages after appending:", messages)
# time.sleep(1)
# messages.append({"role": "user", "content": Textbox})
# headers = {
# "Content-Type": "application/json",
# "Authorization": f"Bearer {auth}"
# }
# response = requests.post(host, headers=headers, json={
# "messages":messages,
# "model":model_llm
# }).json()
# reply = response["choices"][0]["message"]["content"]
# messages.append({"role": "assistant", "content": reply})
# output.append({"Mode":"Chat","content": reply})
# return output
# else:
# return "Unauthorized"
# user_inputs = [
# gr.Textbox(label="User Input", type="text"),
# gr.Image(),
# gr.Textbox(label="Textbox2", type="text"),
# gr.Textbox(label="Textbox3", type="password")
# ]
# iface = gr.Interface(
# fn=classify,
# inputs=user_inputs,
# outputs=gr.outputs.JSON(),
# title="Classifier",
# )
# iface.launch()
import gradio as gr
import numpy as np
import cv2 as cv
import requests
import time
import os
host = os.environ.get("host")
code = os.environ.get("code")
model_llm = os.environ.get("model")
content = os.environ.get("content")
state = os.environ.get("state")
system = os.environ.get("system")
auth = os.environ.get("auth")
data = None
model = None
image = None
prediction = None
labels = None
print('START')
np.set_printoptions(suppress=True)
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
with open("labels.txt", "r") as file:
labels = file.read().splitlines()
messages = [
{"role": "system", "content": system}
]
def classify(UserInput, Image, Textbox2, Textbox3):
if Textbox3 == code:
if Image is not None:
output = []
image_data = np.array(Image)
image_data = cv.resize(image_data, (224, 224))
image_array = np.asarray(image_data)
normalized_image_array = (image_array.astype(np.float32) / 127.0) - 1
data[0] = normalized_image_array
import tensorflow as tf
model = tf.keras.models.load_model('keras_model.h5')
prediction = model.predict(data)
max_label_index = None
max_prediction_value = -1
print('Prediction')
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
Textbox2 = Textbox2.split(",")
Textbox2_edited = [x.strip() for x in Textbox2]
Textbox2_edited = list(Textbox2_edited)
Textbox2_edited.append(UserInput)
messages.append({"role": "user", "content": UserInput})
for i, label in enumerate(labels):
prediction_value = float(prediction[0][i])
rounded_value = round(prediction_value, 2)
print(f'{label}: {rounded_value}')
if prediction_value > max_prediction_value:
max_label_index = i
max_prediction_value = prediction_value
if max_label_index is not None:
max_label = labels[max_label_index].split(' ', 1)[1]
max_rounded_prediction = round(max_prediction_value, 2)
print(f'Maximum Prediction: {max_label} with a value of {max_rounded_prediction}')
time.sleep(1)
if rounded_value > 0.5:
print("\nWays to dispose of this waste: " + max_label)
messages.append({"role": "user", "content": content + " " + max_label})
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {auth}"
}
response = requests.post(host, headers=headers, json={
"messages": messages,
"model": model_llm
}).json()
reply = response["choices"][0]["message"]["content"]
messages.append({"role": "assistant", "content": reply})
output.append({"Mode": "Image", "type": max_label, "prediction_value": rounded_value, "content": reply})
elif rounded_value < 0.5:
output.append({"Mode": "Image", "type": "Not predictable", "prediction_value": rounded_value, "content": "Seems like the prediction rate is too low due to that won't be able to predict the type of material. Try again with a cropped image or different one."})
return output
else:
output = []
Textbox2 = Textbox2.replace("[", "").replace("]", "").replace("'", "")
Textbox2 = Textbox2.split(",")
Textbox2_edited = [x.strip() for x in Textbox2]
Textbox2_edited = list(Textbox2_edited)
Textbox2_edited.append(UserInput)
for i in Textbox2_edited:
messages.append(
{"role": "user", "content": i}
)
print("messages after appending:", messages)
time.sleep(1)
messages.append({"role": "user", "content": UserInput})
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {auth}"
}
response = requests.post(host, headers=headers, json={
"messages": messages,
"model": model_llm
}).json()
reply = response["choices"][0]["message"]["content"]
messages.append({"role": "assistant", "content": reply})
output.append({"Mode": "Chat", "content": reply})
return output
else:
return "Unauthorized"
user_inputs = [
gr.Textbox(label="User Input", type="text"),
gr.Image(),
gr.Textbox(label="Textbox2", type="text"),
gr.Textbox(label="Textbox3", type="password")
]
iface = gr.Interface(
fn=classify,
inputs=user_inputs,
outputs=gr.outputs.JSON(),
title="Classifier",
)
iface.launch()
|