Spaces:
Runtime error
Runtime error
File size: 3,698 Bytes
b1b3f23 d8edf39 fa636b5 8d20412 e3914b4 8d20412 8e67e6e e3914b4 c38a7bb e3914b4 8d20412 c38a7bb e3914b4 429b311 7dd304e e572b7a decc6b2 c38a7bb d8edf39 e3914b4 4365fdc e3914b4 8d20412 e3914b4 4790b80 decc6b2 e3914b4 8d20412 fa636b5 971bf27 e3914b4 0bf30a9 c38a7bb 214a191 e3914b4 429b311 4365fdc 429b311 971bf27 4365fdc 971bf27 4365fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
from cgitb import enable
from pyexpat import model
from statistics import mode
import numpy as np
import gradio as gr
import argparse
import os
from os.path import exists, dirname
import sys
import json
import flask
parent_dir = dirname(os.path.abspath(os.getcwd()))
sys.path.append(parent_dir)
from bayes.explanations import BayesLocalExplanations, explain_many
from bayes.data_routines import get_dataset_by_name
from bayes.models import *
from image_posterior import create_gif
def get_image_data(image_name):
"""Gets the image data and model."""
image = get_dataset_by_name(image_name, get_label=False)
model_and_data = process_imagenet_get_model(image)
return image, model_and_data
def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
print("Inputs Received:", image_name, c_width, n_top, n_gif_imgs)
# cred_width = c_width
# n_top_segs = n_top
# n_gif_images = n_gif_imgs
image, model_and_data = get_image_data(image_name)
print("model_and_data", model_and_data)
# Unpack datax
xtest = model_and_data["xtest"]
ytest = model_and_data["ytest"]
segs = model_and_data["xtest_segs"]
get_model = model_and_data["model"]
label = model_and_data["label"]
if (image_name == 'imagenet_diego'):
label = 156
elif (image_name == 'imagenet_french_bulldog'):
label = 245
# Unpack instance and segments
instance = xtest[0]
segments = segs[0]
# Get wrapped model
cur_model = get_model(instance, segments)
# Get background data
xtrain = get_xtrain(segments)
prediction = np.argmax(cur_model(xtrain[:1]), axis=1)
if image_name in ["imagenet_diego", "imagenet_french_bulldog"]:
assert prediction == label, f"Prediction is {prediction} not {label}"
# Compute explanation
exp_init = BayesLocalExplanations(training_data=xtrain,
data="image",
kernel="lime",
categorical_features=np.arange(xtrain.shape[1]),
verbose=True)
rout = exp_init.explain(classifier_f=cur_model,
data=np.ones_like(xtrain[0]),
label=int(prediction[0]),
cred_width=c_width,
focus_sample=False,
l2=False)
# Create the gif of the explanation
return create_gif(rout['blr'], image_name, segments, instance, prediction[0], n_gif_imgs, n_top)
def image_mod(image):
return image.rotate(45)
if __name__ == "__main__":
# gradio's image inputs look like this: <PIL.Image.Image image mode=RGB size=305x266 at 0x7F3D01C91FA0>
# need to learn how to handle image inputs, or deal with file inputs or just file path strings
inp = gr.inputs.Textbox(lines=1, placeholder="Select an example from below", default="", label="Input Image Path", optional=False)
out = [gr.outputs.HTML(label="Output GIF"), 'text']
iface = gr.Interface(
segmentation_generation,
[
inp,
gr.inputs.Slider(minimum=0.01, maximum=0.8, step=0.01, default=0.1, label="cred_width", optional=False),
gr.inputs.Slider(minimum=1, maximum=10, step=1, default=5, label="n_top_segs", optional=False),
gr.inputs.Slider(minimum=10, maximum=50, step=1, default=20, label="n_gif_images", optional=False),
],
outputs=out,
examples=[["imagenet_diego", 0.01, 7, 50],
["imagenet_french_bulldog", 0.05, 5, 50]]
)
iface.launch(enable_queue=True) |