File size: 3,543 Bytes
b1b3f23
fa636b5
 
e3914b4
 
 
 
 
8e67e6e
e3914b4
 
 
 
 
 
 
 
 
 
 
 
c38a7bb
e3914b4
c38a7bb
 
 
 
 
e3914b4
 
429b311
93f12e7
e572b7a
429b311
 
 
c38a7bb
e3914b4
 
 
 
 
 
 
c38a7bb
e3914b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c38a7bb
fa636b5
 
 
971bf27
e3914b4
0bf30a9
 
c38a7bb
 
e3914b4
429b311
 
 
 
971bf27
429b311
 
971bf27
 
c38a7bb
971bf27
c38a7bb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from cgitb import enable
import numpy as np
import gradio as gr
"""An example of generating a gif explanation for an image of my dog."""
import argparse
import os
from os.path import exists, dirname
import sys
import flask

parent_dir = dirname(os.path.abspath(os.getcwd()))
sys.path.append(parent_dir)

from bayes.explanations import BayesLocalExplanations, explain_many
from bayes.data_routines import get_dataset_by_name
from bayes.models import *
from image_posterior import create_gif	

BLENHEIM_SPANIEL_CLASS = 156


def get_image_data(image_name):
    """Gets the image data and model."""
    if (image_name == "imagenet_diego.png"): 
        image = get_dataset_by_name("imagenet_diego", get_label=False)
        model_and_data = process_imagenet_get_model(image)

    return image, model_and_data


def segmentation_generation(image_name, c_width, n_top, n_gif_imgs):
    print("GRADIO INPUTS:", image_name, c_width, n_top, n_gif_imgs)

    cred_width = c_width
    n_top_segs = n_top
    n_gif_images = n_gif_imgs
    image, model_and_data = get_image_data(image_name)

    # Unpack datax
    xtest = model_and_data["xtest"]
    ytest = model_and_data["ytest"]
    segs = model_and_data["xtest_segs"]
    get_model = model_and_data["model"]
    label = model_and_data["label"]
    print("LABEL:", label)

    # Unpack instance and segments
    instance = xtest[0]
    segments = segs[0]

    # Get wrapped model
    cur_model = get_model(instance, segments)

    # Get background data
    xtrain = get_xtrain(segments)

    prediction = np.argmax(cur_model(xtrain[:1]), axis=1)
    assert prediction == BLENHEIM_SPANIEL_CLASS, f"Prediction is {prediction} not {BLENHEIM_SPANIEL_CLASS}"

    # Compute explanation
    exp_init = BayesLocalExplanations(training_data=xtrain,
                                              data="image",
                                              kernel="lime",
                                              categorical_features=np.arange(xtrain.shape[1]),
                                              verbose=True)
    rout = exp_init.explain(classifier_f=cur_model,
                            data=np.ones_like(xtrain[0]),
                            label=BLENHEIM_SPANIEL_CLASS,
                            cred_width=cred_width,
                            focus_sample=False,
                            l2=False)

    # Create the gif of the explanation
    return create_gif(rout['blr'], image_name, segments, instance, n_gif_images, n_top_segs)

def image_mod(image):
    return image.rotate(45)
    
if __name__ == "__main__":
    # gradio's image inputs look like this: <PIL.Image.Image image mode=RGB size=305x266 at 0x7F3D01C91FA0>
    # need to learn how to handle image inputs, or deal with file inputs or just file path strings
    inp = gr.inputs.Textbox(lines=1, placeholder="Select an example from below", default="", label="Input Image Path", optional=False)
    out = gr.outputs.HTML(label="Output GIF")

    iface = gr.Interface(
        segmentation_generation, 
        [
            inp,
            gr.inputs.Slider(minimum=0.01, maximum=0.8, step=0.001, default=0.1, label="cred_width", optional=False),
            gr.inputs.Slider(minimum=1, maximum=10, step=1, default=5, label="n_top_segs", optional=False),
            gr.inputs.Slider(minimum=10, maximum=50, step=1, default=20, label="n_gif_images", optional=False), 
        ], 
        outputs=out, 
        examples=[["imagenet_diego.png", 0.01, 7, 50]]
    )
    iface.launch(show_error=True, enable_queue=True)