Spaces:
Sleeping
Sleeping
File size: 8,513 Bytes
5f5f8de 38dd749 5f5f8de 105179a 5f5f8de 105179a 38dd749 5f5f8de 105179a 38dd749 5f5f8de 38dd749 5f5f8de 38dd749 5f5f8de 38dd749 5f5f8de 38dd749 5f5f8de 105179a 5f5f8de 105179a 38dd749 105179a a53e1b6 105179a a53e1b6 105179a a53e1b6 105179a a53e1b6 5f5f8de 105179a 5f5f8de a53e1b6 105179a a53e1b6 105179a a53e1b6 105179a a53e1b6 105179a a53e1b6 105179a a53e1b6 105179a 5f5f8de 105179a 5f5f8de a53e1b6 38dd749 105179a 38dd749 a53e1b6 105179a a53e1b6 105179a 5f5f8de 105179a a53e1b6 5f5f8de 38dd749 5f5f8de 38dd749 105179a 38dd749 5f5f8de 105179a 5f5f8de a53e1b6 5f5f8de 105179a 38dd749 105179a 38dd749 105179a 38dd749 105179a 38dd749 105179a 38dd749 105179a 38dd749 105179a 38dd749 105179a 38dd749 105179a 38dd749 105179a 38dd749 105179a 38dd749 5f5f8de 38dd749 105179a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import gradio as gr
from typing import List, Dict, Tuple
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from transformers import pipeline
import os
from astrapy.db import AstraDB
from dotenv import load_dotenv
from huggingface_hub import login
import time
import threading
from queue import Queue
import asyncio
# Load environment variables
load_dotenv()
login(token=os.getenv("HUGGINGFACE_API_TOKEN"))
class SearchCancelled(Exception):
pass
class LegalTextSearchBot:
def __init__(self):
self.astra_db = AstraDB(
token=os.getenv("ASTRA_DB_APPLICATION_TOKEN"),
api_endpoint=os.getenv("ASTRA_DB_API_ENDPOINT")
)
self.collection = self.astra_db.collection("legal_content")
pipe = pipeline(
"text-generation",
model="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
repetition_penalty=1.15
)
self.llm = HuggingFacePipeline(pipeline=pipe)
self.template = """
IMPORTANT: You are a legal assistant that provides accurate information based on the Indian legal sections provided in the context.
STRICT RULES:
1. Base your response ONLY on the provided legal sections
2. If you cannot find relevant information, respond with: "I apologize, but I cannot find information about that in the legal database."
3. Do not make assumptions or use external knowledge
4. Always cite the specific section numbers you're referring to
5. Be precise and accurate in your legal interpretations
6. If quoting from the sections, use quotes and cite the section number
Context (Legal Sections): {context}
Chat History: {chat_history}
Question: {question}
Answer:"""
self.prompt = ChatPromptTemplate.from_template(self.template)
self.chat_history = ""
self.cancel_search = False
def _search_astra(self, query: str) -> List[Dict]:
if self.cancel_search:
raise SearchCancelled("Search was cancelled by user")
try:
results = list(self.collection.vector_find(
query,
limit=5,
fields=["section_number", "title", "chapter_number", "chapter_title",
"content", "type", "metadata"]
))
if not results and not self.cancel_search:
results = list(self.collection.find(
{},
limit=5
))
return results
except Exception as e:
if not isinstance(e, SearchCancelled):
print(f"Error searching AstraDB: {str(e)}")
raise
def format_section(self, section: Dict) -> str:
if self.cancel_search:
raise SearchCancelled("Search was cancelled by user")
try:
return f"""
{'='*80}
Chapter {section.get('chapter_number', 'N/A')}: {section.get('chapter_title', 'N/A')}
Section {section.get('section_number', 'N/A')}: {section.get('title', 'N/A')}
Type: {section.get('type', 'section')}
Content:
{section.get('content', 'N/A')}
References: {', '.join(section.get('metadata', {}).get('references', [])) or 'None'}
{'='*80}
"""
except Exception as e:
print(f"Error formatting section: {str(e)}")
return str(section)
def search_sections(self, query: str, progress=gr.Progress()) -> Tuple[str, str]:
self.cancel_search = False
try:
progress(0, desc="Searching relevant sections...")
search_results = self._search_astra(query)
if not search_results:
return "No relevant sections found.", "I apologize, but I cannot find relevant sections in the database."
progress(0.3, desc="Processing results...")
raw_results = []
context_parts = []
for idx, result in enumerate(search_results):
if self.cancel_search:
raise SearchCancelled("Search was cancelled by user")
raw_results.append(self.format_section(result))
context_parts.append(f"""
Section {result.get('section_number')}: {result.get('title')}
{result.get('content', '')}
""")
progress((0.3 + (idx * 0.1)), desc="Processing results...")
progress(0.8, desc="Generating AI interpretation...")
context = "\n\n".join(context_parts)
chain = self.prompt | self.llm
ai_response = chain.invoke({
"context": context,
"chat_history": self.chat_history,
"question": query
})
self.chat_history += f"\nUser: {query}\nAI: {ai_response}\n"
progress(1.0, desc="Complete!")
return "\n".join(raw_results), ai_response
except SearchCancelled:
return "Search cancelled by user.", "Search was stopped. Please try again with a new query."
except Exception as e:
error_msg = f"Error processing query: {str(e)}"
print(error_msg)
return error_msg, "An error occurred while processing your query."
def cancel(self):
self.cancel_search = True
def create_interface():
with gr.Blocks(title="Bharatiya Nyaya Sanhita Search", theme=gr.themes.Soft()) as iface:
gr.Markdown("""
# π Bharatiya Nyaya Sanhita Legal Search System
Search through the Bharatiya Nyaya Sanhita, 2023 and get:
1. π Relevant sections, explanations, and illustrations
2. π€ AI-powered interpretation of the legal content
Enter your legal query below:
""")
search_bot = LegalTextSearchBot()
with gr.Row():
query_input = gr.Textbox(
label="Your Query",
placeholder="e.g., What are the penalties for public servants who conceal information?",
lines=2
)
with gr.Row():
with gr.Column(scale=4):
search_button = gr.Button("π Search Legal Sections", variant="primary")
with gr.Column(scale=1):
stop_button = gr.Button("π Stop Search", variant="stop")
with gr.Row():
with gr.Column():
raw_output = gr.Markdown(
label="π Relevant Legal Sections"
)
with gr.Column():
ai_output = gr.Markdown(
label="π€ AI Interpretation"
)
gr.Examples(
examples=[
"What are the penalties for public servants who conceal information?",
"What constitutes criminal conspiracy?",
"Explain the provisions related to culpable homicide",
"What are the penalties for causing death by negligence?",
"What are the punishments for corruption?"
],
inputs=query_input,
label="Example Queries"
)
def search(query):
return search_bot.search_sections(query)
def stop_search():
search_bot.cancel()
return "Search cancelled.", "Search stopped by user."
search_button.click(
fn=search,
inputs=query_input,
outputs=[raw_output, ai_output],
cancels=[stop_button] # Cancel any ongoing search when stop is clicked
)
stop_button.click(
fn=stop_search,
outputs=[raw_output, ai_output],
cancels=[search_button] # Cancel the search button when stop is clicked
)
query_input.submit(
fn=search,
inputs=query_input,
outputs=[raw_output, ai_output],
cancels=[stop_button]
)
return iface
if __name__ == "__main__":
demo = create_interface()
demo.launch()
else:
demo = create_interface()
app = demo.launch(share=False) |