File size: 7,643 Bytes
5f5f8de
6404fd8
5f5f8de
e3f3bb1
 
 
 
a8dcc53
e3f3bb1
5f5f8de
a8dcc53
6404fd8
e3f3bb1
6404fd8
e3f3bb1
 
 
 
6404fd8
 
e3f3bb1
 
c784c97
e3f3bb1
 
 
 
 
 
 
 
121ef90
e3f3bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105dc2
e3f3bb1
 
 
 
 
 
 
 
 
 
 
 
105179a
6404fd8
 
e3f3bb1
6404fd8
a8dcc53
e3f3bb1
 
 
 
 
 
a53e1b6
e3f3bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
a8dcc53
cb7bbf3
e3f3bb1
 
121ef90
e3f3bb1
 
 
 
5f5f8de
e3f3bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121ef90
e3f3bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8dcc53
e3f3bb1
 
 
 
 
 
5f5f8de
 
e3f3bb1
 
 
 
 
 
 
 
 
5f5f8de
e3f3bb1
 
 
 
 
 
 
 
 
105179a
e3f3bb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f5f8de
e3f3bb1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import gradio as gr
import chromadb
import os
from openai import OpenAI
import json
from typing import List, Dict
import re

class LegalAssistant:
    def __init__(self):
        # Initialize ChromaDB
        self.chroma_client = chromadb.Client()
        self.collection = self.chroma_client.get_or_create_collection("legal_documents")
        
        # Initialize Mistral AI client
        self.mistral_client = OpenAI(
            api_key=os.environ.get("MISTRAL_API_KEY", "dfb2j1YDsa298GXTgZo3juSjZLGUCfwi"),
            base_url="https://api.mistral.ai/v1"
        )
        
        # Define system prompt with strict rules
        self.system_prompt = """You are a specialized legal assistant trained on Indian law. You MUST follow these strict rules:

RESPONSE FORMAT RULES:
1. ALWAYS structure your response in this exact JSON format:
   {
     "answer": "Your detailed answer here",
     "reference_sections": ["Section X of Act Y", ...],
     "summary": "2-3 line summary",
     "confidence": "HIGH/MEDIUM/LOW"
   }

CONTENT RULES:
1. NEVER make assumptions or provide information not supported by Indian law
2. ALWAYS cite specific sections, acts, and legal precedents
3. If information is insufficient, explicitly state "Insufficient information" in answer
4. NEVER provide legal advice, only legal information
5. For any constitutional matters, ALWAYS cite relevant Articles

ACCURACY RULES:
1. If confidence is less than 80%, mark as LOW confidence
2. If multiple interpretations exist, list ALL with citations
3. If law has been amended, specify the latest amendment date
4. For case law, cite the full case reference

PROHIBITED:
1. NO personal opinions
2. NO hypothetical scenarios
3. NO interpretation of ongoing cases
4. NO advice on specific legal situations

ERROR HANDLING:
1. If query is unclear: Request clarification
2. If outside Indian law scope: State "Outside scope of Indian law"
3. If conflicting laws exist: List all applicable laws"""

    def validate_query(self, query: str) -> tuple[bool, str]:
        """Validate the input query"""
        if not query or len(query.strip()) < 10:
            return False, "Query too short. Please provide more details."
        if len(query) > 500:
            return False, "Query too long. Please be more concise."
        if not re.search(r'[?.]$', query):
            return False, "Query must end with a question mark or period."
        return True, ""

    def _search_documents(self, query: str) -> tuple[str, List[str]]:
        """Search ChromaDB for relevant documents"""
        try:
            results = self.collection.query(
                query_texts=[query],
                n_results=3
            )
            
            if results and results['documents']:
                documents = results['documents'][0]
                metadata = results.get('metadatas', [[]])[0]
                sources = [m.get('source', 'Unknown') for m in metadata]
                return "\n\n".join(documents), sources
            return "", []
        except Exception as e:
            print(f"Search error: {str(e)}")
            return "", []

    def get_response(self, query: str) -> Dict:
        """Get response from Mistral AI with context from ChromaDB"""
        # Validate query
        is_valid, error_message = self.validate_query(query)
        if not is_valid:
            return {
                "answer": error_message,
                "references": [],
                "summary": "Invalid query",
                "confidence": "LOW"
            }

        try:
            # Get relevant context from ChromaDB
            context, sources = self._search_documents(query)
            
            # Prepare content
            content = f"""Context: {context}
Sources: {', '.join(sources)}
Question: {query}""" if context else query
            
            # Get response from Mistral AI
            response = self.mistral_client.chat.completions.create(
                model="mistral-medium",
                messages=[
                    {
                        "role": "system",
                        "content": self.system_prompt
                    },
                    {
                        "role": "user",
                        "content": content
                    }
                ],
                temperature=0.1,
                max_tokens=1000
            )
            
            # Parse response
            if response.choices and len(response.choices) > 0:
                try:
                    result = json.loads(response.choices[0].message.content)
                    return {
                        "answer": result.get("answer", "No answer provided"),
                        "references": result.get("reference_sections", []),
                        "summary": result.get("summary", ""),
                        "confidence": result.get("confidence", "LOW")
                    }
                except json.JSONDecodeError:
                    return {
                        "answer": "Error: Response format invalid",
                        "references": [],
                        "summary": "Response parsing failed",
                        "confidence": "LOW"
                    }
            
            return {
                "answer": "No response received",
                "references": [],
                "summary": "Response generation failed",
                "confidence": "LOW"
            }
            
        except Exception as e:
            return {
                "answer": f"Error: {str(e)}",
                "references": [],
                "summary": "System error occurred",
                "confidence": "LOW"
            }

# Initialize the assistant
assistant = LegalAssistant()

# Create Gradio interface
def process_query(query: str) -> tuple:
    response = assistant.get_response(query)
    return (
        response["answer"],
        ", ".join(response["references"]) if response["references"] else "No specific references",
        response["summary"] if response["summary"] else "No summary available",
        response["confidence"]
    )

# Create the Gradio interface with a professional theme
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # Indian Legal Assistant
    ## Guidelines for Queries:
    1. Be specific and clear in your questions
    2. End questions with a question mark
    3. Provide relevant context if available
    4. Keep queries between 10-500 characters
    """)
    
    with gr.Row():
        query_input = gr.Textbox(
            label="Enter your legal query",
            placeholder="e.g., What is the legal age for marriage in India as per current laws?"
        )
    
    with gr.Row():
        submit_btn = gr.Button("Submit", variant="primary")
    
    with gr.Row():
        confidence_output = gr.Textbox(label="Confidence Level")
    
    with gr.Row():
        answer_output = gr.Textbox(label="Answer", lines=5)
    
    with gr.Row():
        with gr.Column():
            references_output = gr.Textbox(label="Legal References", lines=3)
        with gr.Column():
            summary_output = gr.Textbox(label="Summary", lines=2)
    
    gr.Markdown("""
    ### Important Notes:
    - This assistant provides legal information, not legal advice
    - Always verify information with a qualified legal professional
    - Information is based on Indian law only
    """)
    
    submit_btn.click(
        fn=process_query,
        inputs=[query_input],
        outputs=[answer_output, references_output, summary_output, confidence_output]
    )

# Launch the app
demo.launch()