Spaces:
Sleeping
Sleeping
File size: 7,643 Bytes
5f5f8de 6404fd8 5f5f8de e3f3bb1 a8dcc53 e3f3bb1 5f5f8de a8dcc53 6404fd8 e3f3bb1 6404fd8 e3f3bb1 6404fd8 e3f3bb1 c784c97 e3f3bb1 121ef90 e3f3bb1 2105dc2 e3f3bb1 105179a 6404fd8 e3f3bb1 6404fd8 a8dcc53 e3f3bb1 a53e1b6 e3f3bb1 a8dcc53 cb7bbf3 e3f3bb1 121ef90 e3f3bb1 5f5f8de e3f3bb1 121ef90 e3f3bb1 a8dcc53 e3f3bb1 5f5f8de e3f3bb1 5f5f8de e3f3bb1 105179a e3f3bb1 5f5f8de e3f3bb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
import chromadb
import os
from openai import OpenAI
import json
from typing import List, Dict
import re
class LegalAssistant:
def __init__(self):
# Initialize ChromaDB
self.chroma_client = chromadb.Client()
self.collection = self.chroma_client.get_or_create_collection("legal_documents")
# Initialize Mistral AI client
self.mistral_client = OpenAI(
api_key=os.environ.get("MISTRAL_API_KEY", "dfb2j1YDsa298GXTgZo3juSjZLGUCfwi"),
base_url="https://api.mistral.ai/v1"
)
# Define system prompt with strict rules
self.system_prompt = """You are a specialized legal assistant trained on Indian law. You MUST follow these strict rules:
RESPONSE FORMAT RULES:
1. ALWAYS structure your response in this exact JSON format:
{
"answer": "Your detailed answer here",
"reference_sections": ["Section X of Act Y", ...],
"summary": "2-3 line summary",
"confidence": "HIGH/MEDIUM/LOW"
}
CONTENT RULES:
1. NEVER make assumptions or provide information not supported by Indian law
2. ALWAYS cite specific sections, acts, and legal precedents
3. If information is insufficient, explicitly state "Insufficient information" in answer
4. NEVER provide legal advice, only legal information
5. For any constitutional matters, ALWAYS cite relevant Articles
ACCURACY RULES:
1. If confidence is less than 80%, mark as LOW confidence
2. If multiple interpretations exist, list ALL with citations
3. If law has been amended, specify the latest amendment date
4. For case law, cite the full case reference
PROHIBITED:
1. NO personal opinions
2. NO hypothetical scenarios
3. NO interpretation of ongoing cases
4. NO advice on specific legal situations
ERROR HANDLING:
1. If query is unclear: Request clarification
2. If outside Indian law scope: State "Outside scope of Indian law"
3. If conflicting laws exist: List all applicable laws"""
def validate_query(self, query: str) -> tuple[bool, str]:
"""Validate the input query"""
if not query or len(query.strip()) < 10:
return False, "Query too short. Please provide more details."
if len(query) > 500:
return False, "Query too long. Please be more concise."
if not re.search(r'[?.]$', query):
return False, "Query must end with a question mark or period."
return True, ""
def _search_documents(self, query: str) -> tuple[str, List[str]]:
"""Search ChromaDB for relevant documents"""
try:
results = self.collection.query(
query_texts=[query],
n_results=3
)
if results and results['documents']:
documents = results['documents'][0]
metadata = results.get('metadatas', [[]])[0]
sources = [m.get('source', 'Unknown') for m in metadata]
return "\n\n".join(documents), sources
return "", []
except Exception as e:
print(f"Search error: {str(e)}")
return "", []
def get_response(self, query: str) -> Dict:
"""Get response from Mistral AI with context from ChromaDB"""
# Validate query
is_valid, error_message = self.validate_query(query)
if not is_valid:
return {
"answer": error_message,
"references": [],
"summary": "Invalid query",
"confidence": "LOW"
}
try:
# Get relevant context from ChromaDB
context, sources = self._search_documents(query)
# Prepare content
content = f"""Context: {context}
Sources: {', '.join(sources)}
Question: {query}""" if context else query
# Get response from Mistral AI
response = self.mistral_client.chat.completions.create(
model="mistral-medium",
messages=[
{
"role": "system",
"content": self.system_prompt
},
{
"role": "user",
"content": content
}
],
temperature=0.1,
max_tokens=1000
)
# Parse response
if response.choices and len(response.choices) > 0:
try:
result = json.loads(response.choices[0].message.content)
return {
"answer": result.get("answer", "No answer provided"),
"references": result.get("reference_sections", []),
"summary": result.get("summary", ""),
"confidence": result.get("confidence", "LOW")
}
except json.JSONDecodeError:
return {
"answer": "Error: Response format invalid",
"references": [],
"summary": "Response parsing failed",
"confidence": "LOW"
}
return {
"answer": "No response received",
"references": [],
"summary": "Response generation failed",
"confidence": "LOW"
}
except Exception as e:
return {
"answer": f"Error: {str(e)}",
"references": [],
"summary": "System error occurred",
"confidence": "LOW"
}
# Initialize the assistant
assistant = LegalAssistant()
# Create Gradio interface
def process_query(query: str) -> tuple:
response = assistant.get_response(query)
return (
response["answer"],
", ".join(response["references"]) if response["references"] else "No specific references",
response["summary"] if response["summary"] else "No summary available",
response["confidence"]
)
# Create the Gradio interface with a professional theme
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# Indian Legal Assistant
## Guidelines for Queries:
1. Be specific and clear in your questions
2. End questions with a question mark
3. Provide relevant context if available
4. Keep queries between 10-500 characters
""")
with gr.Row():
query_input = gr.Textbox(
label="Enter your legal query",
placeholder="e.g., What is the legal age for marriage in India as per current laws?"
)
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary")
with gr.Row():
confidence_output = gr.Textbox(label="Confidence Level")
with gr.Row():
answer_output = gr.Textbox(label="Answer", lines=5)
with gr.Row():
with gr.Column():
references_output = gr.Textbox(label="Legal References", lines=3)
with gr.Column():
summary_output = gr.Textbox(label="Summary", lines=2)
gr.Markdown("""
### Important Notes:
- This assistant provides legal information, not legal advice
- Always verify information with a qualified legal professional
- Information is based on Indian law only
""")
submit_btn.click(
fn=process_query,
inputs=[query_input],
outputs=[answer_output, references_output, summary_output, confidence_output]
)
# Launch the app
demo.launch() |