File size: 13,630 Bytes
b9bb7e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c64d65e
b9bb7e7
 
c64d65e
b9bb7e7
 
d45ee38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c407349
bdc42f3
 
8cea364
 
 
 
 
 
 
 
bdc42f3
8cea364
 
c64d65e
bdc42f3
c64d65e
8cea364
c64d65e
 
 
 
 
 
 
 
 
 
b7e0851
c64d65e
 
 
 
 
 
 
 
 
 
 
 
 
8cea364
c64d65e
 
 
 
 
 
 
 
8cea364
 
2e01859
fb9a319
 
 
 
 
 
 
8f07cc0
 
 
 
 
8cea364
fb9a319
8cea364
 
 
 
 
 
 
fb9a319
8cea364
 
 
 
 
 
 
 
 
 
fb9a319
8cea364
 
 
2ed5c8a
fb9a319
c64d65e
8cea364
c64d65e
fb9a319
c64d65e
 
 
 
 
 
 
1317ce0
 
 
 
c64d65e
 
fb9a319
c64d65e
8cea364
c64d65e
fb9a319
2ed5c8a
c64d65e
fb9a319
 
2ed5c8a
 
2e01859
2ed5c8a
4b1fab8
8cea364
2e01859
fb9a319
8cea364
2ed5c8a
5082164
 
 
 
 
 
8cea364
bdc42f3
2ed5c8a
036be0e
 
 
 
 
d45ee38
 
036be0e
 
 
 
 
 
 
 
 
 
 
 
bdc42f3
036be0e
 
2ed5c8a
fb9a319
8cea364
 
 
 
 
 
 
 
 
 
 
66bbfcf
036be0e
8cea364
e3d8df5
0da6aa3
b7e0851
b8bc3c1
2b40ee8
 
 
 
 
 
f931503
58d103a
3aa0579
58d103a
f931503
 
 
b8bc3c1
b770e0b
f931503
b8bc3c1
58d103a
b770e0b
15609a8
 
5465355
15609a8
fb9a319
15609a8
930e9c0
fb9a319
b770e0b
8f07cc0
8989755
fb9a319
d51037f
fb9a319
d51037f
fb9a319
d51037f
930e9c0
b770e0b
fb9a319
b770e0b
 
 
 
 
75ca28f
b770e0b
 
75ca28f
b770e0b
 
 
 
930e9c0
 
 
 
 
 
 
 
b770e0b
 
 
8cea364
 
 
 
 
fb9a319
8cea364
2e01859
8cea364
 
 
 
 
b7e0851
2ed5c8a
 
 
 
036be0e
 
 
 
b7e0851
036be0e
 
 
 
bf9168a
8cea364
75ca28f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import gradio as gr
import os

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings 
from langchain.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub

from pathlib import Path
import chromadb

from transformers import AutoTokenizer
import transformers
import torch
import tqdm 
import accelerate

from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
translation_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
translation_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")

def english_to_hindi(sentence):
    translation_tokenizer.src_lang = "en_xx"
    encoded_hi = translation_tokenizer(sentence, return_tensors="pt")
    generated_tokens = translation_model.generate(**encoded_hi, forced_bos_token_id=translation_tokenizer.lang_code_to_id["hi_IN"] )
    return (translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))


def hindi_to_english(sentence):
    translation_tokenizer.src_lang = "hi_IN"
    encoded_hi = translation_tokenizer(sentence, return_tensors="pt")
    generated_tokens = translation_model.generate(**encoded_hi, forced_bos_token_id=translation_tokenizer.lang_code_to_id["en_XX"] )
    return (translation_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))


llm_model = "mistralai/Mistral-7B-Instruct-v0.2"


# default_persist_directory = './chroma_HF/'
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
    "google/gemma-7b-it","google/gemma-2b-it", \
    "HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
    "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
    "google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
    # Processing for one document only
    # loader = PyPDFLoader(file_path)
    # pages = loader.load()
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    # text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = chunk_size, 
        chunk_overlap = chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits


# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings()
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
        # persist_directory=default_persist_directory
    )
    return vectordb


# Load vector database
def load_db():
    embedding = HuggingFaceEmbeddings()
    vectordb = Chroma(
        # persist_directory=default_persist_directory, 
        embedding_function=embedding)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.1, desc="Initializing HF tokenizer...")
    
    # HuggingFaceHub uses HF inference endpoints
    progress(0.5, desc="Initializing HF Hub...")
    # Use of trust_remote_code as model_kwargs
    # Warning: langchain issue
    # URL: https://github.com/langchain-ai/langchain/issues/6080

    llm = HuggingFaceHub(repo_id=llm_model, model_kwargs={"temperature": temperature, 
                                                          "max_new_tokens": max_tokens, 
                                                          "top_k": top_k, 
                                                          "load_in_8bit": True})
    
    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    # retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
    retriever=vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        # combine_docs_chain_kwargs={"prompt": your_prompt})
        return_source_documents=True,
        #return_generated_question=False,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain


# Initialize database
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
    # Create list of documents (when valid)
    list_file_path = [x.name for x in list_file_obj if x is not None]
    # Create collection_name for vector database
    progress(0.1, desc="Creating collection name...")
    collection_name = Path(list_file_path[0]).stem
    # Fix potential issues from naming convention
    ## Remove space
    collection_name = collection_name.replace(" ","-") 
    ## Limit lenght to 50 characters
    collection_name = collection_name[:50]
    ## Enforce start and end as alphanumeric character
    if not collection_name[0].isalnum():
        collection_name[0] = 'A'
    if not collection_name[-1].isalnum():
        collection_name[-1] = 'Z'
    # print('list_file_path: ', list_file_path)
    print('Collection name: ', collection_name)
    progress(0.25, desc="Loading document...")
    # Load document and create splits
    doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
    # Create or load vector database
    progress(0.5, desc="Generating vector database...")
    # global vector_db
    vector_db = create_db(doc_splits, collection_name)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"


def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    # print("llm_option",llm_option)
    llm_name = llm_model
    print("llm_name: ",llm_name)
    qa_chain = initialize_llmchain(llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"


def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history
    

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    #print("formatted_chat_history",formatted_chat_history)
   
    # Generate response using QA chain
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    #response_answer = response["answer"]
    response_answer = english_to_hindi(response["answer"])[0]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    # Langchain sources are zero-based
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    # print ('chat response: ', response_answer)
    # print('DB source', response_sources)
    
    # Append user message and response to chat history
    new_history = history + [(message, response_answer)]
    # return gr.update(value=""), new_history, response_sources[0], response_sources[1] 
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
    

def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    # print(file_path)
    # initialize_database(file_path, progress)
    return list_file_path


def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()
        pdf_directory = '/home/user/app/pdfs'

        def process_pdfs():
            # List all PDF files in the directory
            pdf_files = [os.path.join(pdf_directory, file) for file in os.listdir(pdf_directory) if file.endswith(".pdf")]
            return pdf_files
            
        # Create a dictionary with the necessary information
        pdf_dict = {"value": process_pdfs, "height": 100, "file_count": "multiple", 
                    "visible": False, "file_types": ["pdf"], "interactive": True, 
                    "label": "Uploaded PDF documents"}
        
        # Create a gr.Files component with the dictionary
        #document_files = gr.Files(**pdf_dict)

        with gr.Row():
            # document = gr.Files(value = process_pdfs, height=100, file_count="multiple",visible=True,
            #                     file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
            document = gr.Files(**pdf_dict)
        with gr.Row():
            db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database",visible=False)
        with gr.Accordion("Advanced options - Document text splitter", open=False, visible=False):
            with gr.Row():
                slider_chunk_size = gr.Slider(value=2048, label="Chunk size", info="Chunk size", interactive=False, visible=False)
            with gr.Row():
                slider_chunk_overlap = gr.Slider(value=256, label="Chunk overlap", info="Chunk overlap", interactive=False, visible=False)

            


        with gr.Accordion("Advanced options - LLM model", open=False, visible=False):
            with gr.Row():
                slider_temperature = gr.Slider(value = 0.1,visible=False)
            with gr.Row():
                slider_maxtokens = gr.Slider(value = 4096, visible=False)
            with gr.Row():
                slider_topk = gr.Slider(value = 3, visible=False)



        chatbot = gr.Chatbot(height=300)
        with gr.Accordion("Advanced - Document references", open=False):
            with gr.Row():
                doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                source1_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                source2_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                source3_page = gr.Number(label="Page", scale=1)
        with gr.Row():
            msg = gr.Textbox(placeholder="Type message", container=True)
        with gr.Row():
            db_progress = gr.Textbox(label="Vector database initialization", value="None", visible=True)
        with gr.Row():
            db_btn = gr.Button("Generate vector database...")
        with gr.Row():
            llm_progress = gr.Textbox(value="None",label="QA chain initialization", visible=True)
        with gr.Row():
            qachain_btn = gr.Button("Initialize question-answering chain...")
        with gr.Row():
            submit_btn = gr.Button("Submit")
            clear_btn = gr.ClearButton([msg, chatbot])
            
        # Preprocessing events
        #upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
        db_btn.click(initialize_database, \
            inputs=[document, slider_chunk_size, slider_chunk_overlap], \
            outputs=[vector_db, collection_name, db_progress])
        qachain_btn.click(initialize_LLM, \
            inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db], \
            outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)

        # Chatbot events
        msg.submit(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        submit_btn.click(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
    demo.queue().launch(debug=True)


if __name__ == "__main__":
    demo()