File size: 5,270 Bytes
2f0e211 d05ba12 2f0e211 3e93b01 2f0e211 3e93b01 2f0e211 e455307 895d964 d05ba12 2f0e211 41297e0 2f0e211 8db718c 9c04c52 e455307 8db718c 9c04c52 8db718c 9c04c52 8db718c 9c04c52 8db718c 2f0e211 9c04c52 a08bac4 369d9fb a08bac4 369d9fb a08bac4 2f0e211 d05ba12 2f0e211 271a194 895d964 00e09c1 2f0e211 2545c31 211d0af 895d964 211d0af 2545c31 2f0e211 d05ba12 2545c31 8db718c d05ba12 2545c31 d05ba12 8db718c d05ba12 e455307 2f0e211 b91cab8 2f0e211 895d964 2f0e211 b505ef9 a08bac4 2f0e211 bbb69a1 e455307 2f0e211 a08bac4 e455307 a08bac4 2f0e211 e455307 2f0e211 41297e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
import os
import time
import threading
from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
os.environ['OPENAI_API_KEY'] = os.getenv("Your_API_Key")
# Global variable for tracking last interaction time
last_interaction_time = 0
def loading_pdf():
return "Working on the upload. Also, pondering the usefulness of sporks..."
# Inside Chroma mod
def summary(self):
num_documents = len(self.documents)
avg_doc_length = sum(len(doc) for doc in self.documents) / num_documents
return f"Number of documents: {num_documents}, Average document length: {avg_doc_length}"
# PDF summary and query using stuffing
def pdf_changes(pdf_doc):
try:
loader = OnlinePDFLoader(pdf_doc.name)
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
texts = text_splitter.split_documents(documents)
# Initialize summary variable
full_summary = ""
# Divide the text into smaller chunks, for example 3 pages per chunk
for i in range(0, len(texts), 3):
chunk = " ".join(texts[i:i+3])
# Load the summarization chain with stuffing method
stuff_chain = load_summarize_chain(vertex_llm_text, chain_type="stuff", prompt=prompt)
# Generate summary for the chunk
chunk_summary = stuff_chain.run(chunk)
# Add the chunk summary to the full summary
full_summary += f"Summary of pages {i+1}-{i+3}:\n{chunk_summary}\n"
embeddings = OpenAIEmbeddings()
global db
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever()
global qa
qa = ConversationalRetrievalChain.from_llm(
llm=OpenAI(temperature=0.2, model_name="gpt-3.5-turbo", max_tokens=-1, n=2),
retriever=retriever,
return_source_documents=False
)
return f"Ready. Full Summary:\n{full_summary}"
except Exception as e:
return f"Error processing PDF: {str(e)}"
def clear_data():
global qa, db
qa = None
db = None
return "Data cleared"
def add_text(history, text):
global last_interaction_time
last_interaction_time = time.time()
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
sentences = ' \n'.join(response.split('. '))
formatted_response = f"**Bot:**\n\n{sentences}"
history[-1][1] = formatted_response
return history
def infer(question, history):
try:
res = []
for human, ai in history[:-1]:
pair = (human, ai)
res.append(pair)
chat_history = res
query = question
result = qa({"question": query, "chat_history": chat_history, "system": "This is a world-class summarizing AI, be helpful."})
return result["answer"]
except Exception as e:
return f"Error querying chatbot: {str(e)}"
def auto_clear_data():
global qa, da, last_interaction_time
if time.time() - last_interaction_time > 1000:
qa = None
db = None
def periodic_clear():
while True:
auto_clear_data()
time.sleep(1000)
threading.Thread(target=periodic_clear).start()
css = """
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<h1>CauseWriter Chat with PDF • OpenAI</h1>
<p style="text-align: center;">Upload a .PDF from your computer, click the "Load PDF to LangChain" button, <br />
when everything is ready, you can start asking questions about the pdf. <br />
This version is set to store chat history and uses OpenAI as LLM.</p>
</div>
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Column():
pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
with gr.Row():
langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
load_pdf = gr.Button("Convert PDF to Magic AI language")
clear_btn = gr.Button("Clear Data")
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=450)
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter")
submit_btn = gr.Button("Send Message")
load_pdf.click(loading_pdf, None, langchain_status, queue=False)
load_pdf.click(pdf_changes, inputs=[pdf_doc], outputs=[langchain_status], queue=False)
clear_btn.click(clear_data, outputs=[langchain_status], queue=False)
question.submit(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
bot, chatbot, chatbot
)
demo.launch() |