File size: 13,801 Bytes
ba1dd32
 
058edcf
754305e
ba1dd32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058edcf
 
 
754305e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
058edcf
7443b9e
754305e
058edcf
754305e
7443b9e
 
 
 
 
 
 
058edcf
8ab5552
058edcf
d271c73
 
8ab5552
090e816
 
ea9f5e6
8ab5552
9acdb25
 
7443b9e
8ab5552
9acdb25
 
 
 
 
 
 
76099c9
754305e
 
 
 
328f94a
 
 
d271c73
 
754305e
 
 
 
 
 
5363958
 
 
 
 
 
504cdb5
754305e
328f94a
 
 
 
 
7b006b6
 
 
 
754305e
 
 
 
 
 
 
 
328f94a
 
504cdb5
 
328f94a
 
 
 
 
504cdb5
 
328f94a
 
 
504cdb5
d271c73
504cdb5
d271c73
 
 
 
504cdb5
d271c73
504cdb5
d271c73
 
 
504cdb5
 
 
058edcf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import random
import ipaddress
import pandas as pd
import re

### SWAKS ###

def get_subclasses(ip_classes: str):
    ip_classes = ip_classes.split('\n')
    result = []
    for ip_class in ip_classes:
        try:
            network = ipaddress.IPv4Network(ip_class, strict=False)
            for ip in network.subnets(new_prefix=24):
                result.append(str(ip))
        except ValueError:
            result.append(f"Invalid IP class: {ip_class}")
    return result


def update_header(max_ips):
    return f"found=0; max_ips={int(max_ips)};\n"


def str_to_list(ips_string) -> list:
    """
    Converts a string to a list.
    """
    return ips_string.split('\n')


def generate_cmds_from_bulk(big_subclasses_raw: str,
                            domain_raw: str,
                            max_ips: int = 2,
                            sample_size: int = 5):
    """
    big_subclasses_raw: The list of classes
    domain_raw: The list of domains
    max_ips: The maximum number of IPs to pick
    sample_size: The number of sample size to generate IPs from /24 class
    """
    # Gradio fixes
    # big_subclasses_raw = big_subclasses_raw.split('\n')
    domain_raw = domain_raw.split('\n')
    sample_size = int(sample_size)
    max_ips = int(max_ips)
    
    commands = []
    header = f"found=0; max_ips={max_ips};"

    for ip_subclass_24 in get_subclasses(big_subclasses_raw):
        ip_addresses_1_20, ip_addresses_201_255 = generate_ip_addresses(ip_subclass_24)
        commands.append(header)
        
        for ip in random.sample(ip_addresses_1_20, sample_size):
            commands.append(generate_randomized_output_max_ips(ip, domain_raw))
        
        commands.append(header)
        for ip in random.sample(ip_addresses_201_255, sample_size):   
            commands.append(generate_randomized_output_max_ips(ip, domain_raw))
    return '\n'.join(commands)


def generate_ips_per_subclass(ip_subclasses: str, num_of_ips: int) -> str:
    """
    Generates a list of IP addresses for a given list of IP subclasses and the number of IPs.

    :param ip_subclasses: List of non /24 IP subclasses in CIDR notation.
    :param num_of_ips: Number of IP addresses to generate per IP subclass.
    :return: List of generated IP addresses.
    """
    ip_addresses = []

    for ip_subclass_24 in get_subclasses(ip_subclasses):
                ip_addresses.extend(generate_ips_per_slash24(ip_subclass_24, num_of_ips))
    return ip_addresses


def generate_ips_per_slash24(ip_class: str, num_ips: int) -> list:
    """
    Generates a list of IP addresses within a specified class C network (/24).

    :param ip_class: The IP class in CIDR notation, e.g., "192.168.1.1/24".
    :param num_ips: The number of IP addresses to generate.
    :return: A list of generated IP addresses.
    """
    ip_addresses = []
    
    # The IP address ranges for two disjoint domains.
    domain1 = range(1, 20)
    domain2 = range(201, 254)
    num_ips = int(num_ips)

    # The base of the IP address (e.g., "192.168.1." for "192.168.1.1/24").
    base_ip = ip_class.split('/')[0].rsplit('.', 1)[0] + '.'

    for i in range(1, num_ips + 1):
        # If the index is in the first half of the requested IPs, 
        # generate an IP from the first domain.
        if i <= num_ips / 2:
            ip_addresses.append(base_ip +random.choice(domain1).__str__())
        # If the index is in the second half of the requested IPs,
        # generate an IP from the second domain.
        else:
            ip_addresses.append(base_ip +random.choice(domain2).__str__())
    
    return ip_addresses


def generate_ip_addresses(slash_24: str) -> list:
    ip_addresses_1_20 = []
    ip_addresses_201_255 = []

    # The IP address ranges for two disjoint domains.
    domain_1_20 = range(1, 20)
    domain_201_255 = range(201, 255)
    # domain = chain(domain_1_20, domain_201_255)

    # The base of the IP address (e.g., "192.168.1." for "192.168.1.1/24").
    base_ip = slash_24.split('/')[0].rsplit('.', 1)[0] + '.'
    for ip in domain_1_20:        
        ip_addresses_1_20.append(base_ip + ip.__str__())

    for ip in domain_201_255:        
        ip_addresses_201_255.append(base_ip + ip.__str__())

    return [ip_addresses_1_20, ip_addresses_201_255]


def generate_random_string(min_length=2, max_length=7):
    letters = "abcdefghijklmnopqrstuvwxyz"
    length = random.randint(min_length, max_length)
    return ''.join(random.choice(letters) for _ in range(length))


def generate_randomized_output_max_ips(ip_address: str, domain_list: list, sleep_sec: int = 5) -> str:
    part1 = generate_random_string()
    part2 = generate_random_string()
    part3 = generate_random_string()
    part4 = generate_random_string()
    # domain_list = domain_list.split('\n')
    domain = random.choice(domain_list)
    ip_class = ip_address.rsplit('.', 1)[0]
    
    template = f"""if [ $found -lt $max_ips ]; then swaks -t [email protected] -h {part1}-{part2}.{part3}-{part4}.com -f from@{domain} -q from --li {ip_address} |\
tee -a swaks_full.log | \
grep -q 'sender ok'; \
if [ $? -eq 0 ]; \
then \
found=$((found+1)); \
echo {ip_address} >>bune_{ip_class}.txt; \
else echo {ip_address} >>blocate_{ip_class}.txt; \
fi; \
sleep {sleep_sec}; \
fi;"""
    return template


### MIX ###

def mix(domains: str, ip_addresses: str, num_of_ips: int) -> str:
    """
    Mixes the IP addresses with the domains.

    :param ip_addresses: List of IP addresses.
    :param domains: List of domains.
    :return: List of mixed IP addresses and domains.
    """
    domains = domains.split('\n')
    ip_addresses = ip_addresses.split('\n')
    
    mixed = []
  
    # Check if the number of IP addresses is the same than the number of domains.
    if len(ip_addresses) == len(domains):
        for i in range(len(ip_addresses)):
            if i % num_of_ips == 0:
                mixed.append('')
            line = domains[i] + ': ' + ip_addresses[i]
            mixed.append(line)
    else:
        raise ValueError('The number of IP addresses and domains must be the same.')
    
    return "\n".join(mixed)


# def generate_ips_per_subclass(ip_subclasses: str, num_of_ips: int) -> str:
#     """
#     Generates a list of IP addresses for a given list of IP subclasses and the number of IPs.

#     :param ip_subclasses: List of non /24 IP subclasses in CIDR notation.
#     :param num_of_ips: Number of IP addresses to generate per IP subclass.
#     :return: List of generated IP addresses.
#     """
#     ip_addresses = []

#     for ip_subclass_24 in get_subclasses(ip_subclasses):
#                 ip_addresses.extend(generate_ips_per_slash24(ip_subclass_24, num_of_ips))
#     return ip_addresses

def generate_ips_per_subclass(ip_subclasses: str, num_of_ips: int) -> str:
    """
    Generates a list of IP addresses for a given list of IP subclasses and the number of IPs.

    :param ip_subclasses: List of non /24 IP subclasses in CIDR notation.
    :param num_of_ips: Number of IP addresses to generate per IP subclass.
    :return: List of generated IP addresses.
    """
    ip_subclasses = ip_subclasses.split('\n')
    ip_addresses = []
    mask_split_threshold = 24

    for ip_subclass in ip_subclasses:
        ip_base, mask = ip_subclass.rsplit('/', 1) 
        mask = int(mask)
        ip_base = ip_base.rsplit('.', 1)[0]

        if mask == mask_split_threshold:
            ip_addresses.extend(generate_ips_per_slash24(ip_subclass, num_of_ips))
        else:
            for i in range((mask_split_threshold - mask) ** 2):
                split_ip_base = ip_base.split('.')
                third_octet = int(split_ip_base[2]) + i

                # Construct the /24 subnet for the IP subclass
                ip_subclass_24 = split_ip_base[0] + '.' + split_ip_base[1] + '.' + str(third_octet) + '.0/24'

                # Assuming generate_ips_per_slash24 is the same as the previously discussed generate_ips function
                ip_addresses.extend(generate_ips_per_slash24(ip_subclass_24, num_of_ips))
    return "\n".join(ip_addresses)


def _replace_numbers(input_string: str) -> str:
    # Find the numbers before and inside the parentheses
    match = re.search(r'(\d+)\s*\((\d+)\)', input_string)
    if match:
        # Replace the first set of numbers with the second set
        replaced_string = input_string.replace(match.group(1), match.group(2), 1)
        # Remove the parentheses and any surrounding whitespace
        cleaned_string = re.sub(r'\(\d+\)', '', replaced_string).strip()
        return cleaned_string
    else:
        return input_string

def _limit_chars(input_string: str, limit: int = 35) -> str:
    return input_string[:limit]

### GENERATE TOP LISTS ###
def compute_offer(csv_file, days_lookback, min_sent, domain, team, offer_type, x_list, ):
    pd.set_option('display.max_colwidth', 10)

    df_all = pd.read_csv(csv_file.name, parse_dates=['Data'])
    if team == "Team 1":
        team_members = ['Ana Boros', 'Adrian Pop',
                'Liviu Avram', 'Alexandru Popescu', 'Vlad Draghici']
    elif team == "Team 2":
        team_members = ['Cristi Rusu', 'Robert Rachiteanu', 'Adrian Sabau','Gabriel Sabau']
    else:
        team_members = [] # All

    cols = ['Campanie', 'Oferta', 'Nume', 'Server', 'User', 'offer_id',
        'Lista Custom', 'Data', 'HClicks', 'Clicks', 'Unscribers', 'Openers',
        'Click Open', 'Leads', 'CLike', 'Complains', 'Traps', 'Send', 'ECPM', 'Comision', 'Domeniu']

    df_all['offer_id'] = df_all['Nume'].str.extract(r'(\d{3,4}$)')
    
    # Treat Aol as Yahoo
    df_all['Domeniu'].replace('Aol', 'Yahoo', inplace=True)

    if offer_type == "Offers - IDs only" or offer_type == "Offers":
        exclude_list = df_all[(df_all['Data'] > (pd.Timestamp('now') - pd.Timedelta(days=days_lookback))) \
                            & (df_all['Domeniu'] == domain)\
                            & (df_all['User'].isin(team_members))]['offer_id'].unique()
        df_all = df_all[~df_all['offer_id'].isin(exclude_list)]
    elif offer_type == "Newsletters":
        exclude_list = df_all[(df_all['Data'] > (pd.Timestamp('now') - pd.Timedelta(days=days_lookback))) \
                                   & (df_all['Domeniu'] == domain)]['Oferta'].unique()
        df_all = df_all[~df_all['Oferta'].isin(exclude_list)]
        
   
    
    df_all = df_all[df_all['Send'] > int(min_sent)]
    df_all = df_all[cols]
    # fixed a blank line in the csv
    df_all = df_all[df_all["Oferta"] != " "]
    
    df_all['Click Open'] = df_all['Click Open'].str.replace('%', '').astype(float)
    df_all['ECPM'] = df_all['ECPM'].astype(float)
    df_all['Comision'] = df_all['Comision'].astype(float)
    df_all['Send'] = df_all['Send'].astype(int)

    # Limit the characters in the "Nume" column
    # df_all["Nume"] = df_all["Nume"].apply(_limit_chars)

    # Filter for newsletters or offers
    if offer_type == "Newsletters":
        df_all = df_all[
                        df_all['Nume'].str.startswith("Aeon News") & \
                        (~df_all['Nume'].str.contains(r'\(\d{4}\)')) & \
                        (df_all['Nume'].str.contains(r' \d{4}$')) & \
                        (~df_all['Nume'].str.contains('TRIMITE'))
                        ]
    elif offer_type == "Offers" or offer_type == "Offers - IDs only":
        df_all = df_all[~df_all['Nume'].str.startswith("Aeon News")]
        df_all = df_all[~df_all['Nume'].str.contains("NU SE TRIMITE")]
        df_all = df_all[~df_all['Nume'].str.contains("de testat")]
        df_all = df_all[~df_all['Nume'].str.contains("_TEST")]
        df_all = df_all[~df_all['Nume'].str.contains("CPM")]
        df_all = df_all[~df_all['Nume'].str.contains("RESTRICTED")]

    if x_list != "":
        x_list = x_list.split(',')
        df_all = df_all[~df_all['Nume'].str.contains('|'.join(x_list))]
    # Compress the newsletter names
    # df_all = df_all[df_all['Nume'].str.contains(r'\b[A-Z]{3}\b.*\b\d{4}\*?\s*(\(\d{4}\))?\b')]
    # df_all['Nume'] = df_all['Nume'].apply(_replace_numbers)
    # exclude again after the transformation
    # df_all = df_all[~df_all['Oferta'].isin(exclude_list)]

    df_all.reset_index(drop=True, inplace=True)

    if offer_type == "Newsletters":
        final_df = df_all.groupby(["Oferta", "Nume"])\
            .agg( times_sent=('Oferta', 'count'), send_avg=('Send', 'mean'), CO=('Click Open', 'mean'))\
            .sort_values(['CO', 'times_sent'], ascending=False)
        final_df['send_avg'] = final_df['send_avg'].astype(int)
        final_df['CO'] = final_df['CO'].round(2).astype(float)
        final_df.reset_index(inplace=True)
    elif offer_type == "Offers":
        final_df = df_all.groupby(["Oferta", "Nume"])\
            .agg( times_sent=('Oferta', 'count'), send_avg=('Send', 'mean'), ECPM=('ECPM', 'mean'))\
            .sort_values(['ECPM', 'times_sent'], ascending=False)
        final_df['send_avg'] = final_df['send_avg'].astype(int)
        final_df['ECPM'] = final_df['ECPM'].round(2).astype(float)
        final_df.reset_index(inplace=True)
    elif offer_type == "Offers - IDs only":

        final_df = df_all.groupby(["offer_id"])\
            .agg( times_sent=('offer_id', 'count'), send_avg=('Send', 'mean'), total_sent=('Send', 'sum'),\
                USD=('Comision', 'sum'))
            
        final_df['USD'] = final_df['USD'].round(2).astype(float)
        final_df['send_avg'] = final_df['send_avg'].astype(int)
        final_df['ECPM'] = ( ( final_df['USD'] * 33.33 ) / final_df['total_sent'] ) * 1000
        final_df['ECPM'] = final_df['ECPM'].round(2).astype(float)

        final_df.sort_values(by='ECPM', ascending=False, inplace=True)

        final_df.reset_index(inplace=True)
    else:
        final_df = pd.DataFrame()
    return final_df