Steven Liu
update model card README.md
a68e896
|
raw
history blame
2.16 kB
metadata
license: apache-2.0
tags:
  - summarization
  - generated_from_trainer
datasets:
  - billsum
metrics:
  - rouge
model-index:
  - name: t5-small-finetuned-billsum-ca_test
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: billsum
          type: billsum
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 52.2582

t5-small-finetuned-billsum-ca_test

This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5234
  • Rouge1: 52.2582
  • Rouge2: 34.8162
  • Rougel: 50.5491
  • Rougelsum: 50.6121
  • Gen Len: 18.996

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 495 1.8113 58.4024 41.7432 56.9521 57.0516 18.9597
2.709 2.0 990 1.6230 47.7769 32.1777 46.0344 46.046 18.996
1.9323 3.0 1485 1.5459 51.2371 33.8242 49.4532 49.5038 18.996
1.7842 4.0 1980 1.5234 52.2582 34.8162 50.5491 50.6121 18.996

Framework versions

  • Transformers 4.12.2
  • Pytorch 1.9.0+cu111
  • Datasets 1.14.0
  • Tokenizers 0.10.3