|
--- |
|
license: apache-2.0 |
|
tags: |
|
- summarization |
|
- generated_from_trainer |
|
datasets: |
|
- billsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-finetuned-billsum-ca_test |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: billsum |
|
type: billsum |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 52.2582 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-finetuned-billsum-ca_test |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5234 |
|
- Rouge1: 52.2582 |
|
- Rouge2: 34.8162 |
|
- Rougel: 50.5491 |
|
- Rougelsum: 50.6121 |
|
- Gen Len: 18.996 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 495 | 1.8113 | 58.4024 | 41.7432 | 56.9521 | 57.0516 | 18.9597 | |
|
| 2.709 | 2.0 | 990 | 1.6230 | 47.7769 | 32.1777 | 46.0344 | 46.046 | 18.996 | |
|
| 1.9323 | 3.0 | 1485 | 1.5459 | 51.2371 | 33.8242 | 49.4532 | 49.5038 | 18.996 | |
|
| 1.7842 | 4.0 | 1980 | 1.5234 | 52.2582 | 34.8162 | 50.5491 | 50.6121 | 18.996 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.12.2 |
|
- Pytorch 1.9.0+cu111 |
|
- Datasets 1.14.0 |
|
- Tokenizers 0.10.3 |
|
|