hubert-model-v2 / README.md
thelikhit's picture
End of training
879d7d4 verified
metadata
library_name: transformers
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
datasets:
  - gtzan
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: hubert-model-v2
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: gtzan
          type: gtzan
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.82
          - name: Precision
            type: precision
            value: 0.8391562316626255
          - name: Recall
            type: recall
            value: 0.82
          - name: F1
            type: f1
            value: 0.822405644289722

hubert-model-v2

This model is a fine-tuned version of facebook/hubert-base-ls960 on the gtzan dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9612
  • Accuracy: 0.82
  • Precision: 0.8392
  • Recall: 0.82
  • F1: 0.8224

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.2086 1.0 200 2.0834 0.265 0.1987 0.265 0.1723
1.8657 2.0 400 1.7149 0.385 0.3228 0.385 0.3226
1.5242 3.0 600 1.4365 0.49 0.4463 0.49 0.4280
1.2542 4.0 800 1.2907 0.57 0.6029 0.57 0.5477
1.0119 5.0 1000 1.0524 0.69 0.7249 0.69 0.6745
0.8835 6.0 1200 1.1677 0.69 0.7156 0.69 0.6718
0.7271 7.0 1400 0.9158 0.745 0.7569 0.745 0.7309
0.5453 8.0 1600 0.7592 0.82 0.8296 0.82 0.8185
0.4503 9.0 1800 0.9936 0.775 0.8138 0.775 0.7799
0.3625 10.0 2000 0.9192 0.815 0.8258 0.815 0.8146
0.2773 11.0 2200 0.9768 0.82 0.8362 0.82 0.8201
0.2309 12.0 2400 0.9612 0.82 0.8392 0.82 0.8224

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0