metadata
library_name: transformers
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
- generated_from_trainer
datasets:
- gtzan
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: hubert-model-v2
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: gtzan
type: gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.82
- name: Precision
type: precision
value: 0.8391562316626255
- name: Recall
type: recall
value: 0.82
- name: F1
type: f1
value: 0.822405644289722
hubert-model-v2
This model is a fine-tuned version of facebook/hubert-base-ls960 on the gtzan dataset. It achieves the following results on the evaluation set:
- Loss: 0.9612
- Accuracy: 0.82
- Precision: 0.8392
- Recall: 0.82
- F1: 0.8224
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 12
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
2.2086 | 1.0 | 200 | 2.0834 | 0.265 | 0.1987 | 0.265 | 0.1723 |
1.8657 | 2.0 | 400 | 1.7149 | 0.385 | 0.3228 | 0.385 | 0.3226 |
1.5242 | 3.0 | 600 | 1.4365 | 0.49 | 0.4463 | 0.49 | 0.4280 |
1.2542 | 4.0 | 800 | 1.2907 | 0.57 | 0.6029 | 0.57 | 0.5477 |
1.0119 | 5.0 | 1000 | 1.0524 | 0.69 | 0.7249 | 0.69 | 0.6745 |
0.8835 | 6.0 | 1200 | 1.1677 | 0.69 | 0.7156 | 0.69 | 0.6718 |
0.7271 | 7.0 | 1400 | 0.9158 | 0.745 | 0.7569 | 0.745 | 0.7309 |
0.5453 | 8.0 | 1600 | 0.7592 | 0.82 | 0.8296 | 0.82 | 0.8185 |
0.4503 | 9.0 | 1800 | 0.9936 | 0.775 | 0.8138 | 0.775 | 0.7799 |
0.3625 | 10.0 | 2000 | 0.9192 | 0.815 | 0.8258 | 0.815 | 0.8146 |
0.2773 | 11.0 | 2200 | 0.9768 | 0.82 | 0.8362 | 0.82 | 0.8201 |
0.2309 | 12.0 | 2400 | 0.9612 | 0.82 | 0.8392 | 0.82 | 0.8224 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0