|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: facebook/hubert-base-ls960 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- gtzan |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: hubert-model-v2 |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: gtzan |
|
type: gtzan |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.82 |
|
- name: Precision |
|
type: precision |
|
value: 0.8391562316626255 |
|
- name: Recall |
|
type: recall |
|
value: 0.82 |
|
- name: F1 |
|
type: f1 |
|
value: 0.822405644289722 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# hubert-model-v2 |
|
|
|
This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on the gtzan dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9612 |
|
- Accuracy: 0.82 |
|
- Precision: 0.8392 |
|
- Recall: 0.82 |
|
- F1: 0.8224 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 12 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 2.2086 | 1.0 | 200 | 2.0834 | 0.265 | 0.1987 | 0.265 | 0.1723 | |
|
| 1.8657 | 2.0 | 400 | 1.7149 | 0.385 | 0.3228 | 0.385 | 0.3226 | |
|
| 1.5242 | 3.0 | 600 | 1.4365 | 0.49 | 0.4463 | 0.49 | 0.4280 | |
|
| 1.2542 | 4.0 | 800 | 1.2907 | 0.57 | 0.6029 | 0.57 | 0.5477 | |
|
| 1.0119 | 5.0 | 1000 | 1.0524 | 0.69 | 0.7249 | 0.69 | 0.6745 | |
|
| 0.8835 | 6.0 | 1200 | 1.1677 | 0.69 | 0.7156 | 0.69 | 0.6718 | |
|
| 0.7271 | 7.0 | 1400 | 0.9158 | 0.745 | 0.7569 | 0.745 | 0.7309 | |
|
| 0.5453 | 8.0 | 1600 | 0.7592 | 0.82 | 0.8296 | 0.82 | 0.8185 | |
|
| 0.4503 | 9.0 | 1800 | 0.9936 | 0.775 | 0.8138 | 0.775 | 0.7799 | |
|
| 0.3625 | 10.0 | 2000 | 0.9192 | 0.815 | 0.8258 | 0.815 | 0.8146 | |
|
| 0.2773 | 11.0 | 2200 | 0.9768 | 0.82 | 0.8362 | 0.82 | 0.8201 | |
|
| 0.2309 | 12.0 | 2400 | 0.9612 | 0.82 | 0.8392 | 0.82 | 0.8224 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|