metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
widget:
- src: >-
https://cdn.discordapp.com/attachments/1120417968032063538/1191101288428097727/1.jpg?ex=65a43684&is=6591c184&hm=aed9f3278325ea30e30557e201adcfc43ce2ce77f2218b5f8f232a26b4ac2985&
- src: >-
https://cdn.discordapp.com/attachments/1120417968032063538/1191101301698867260/2.jpg?ex=65a43687&is=6591c187&hm=dee873150a2910177be30e5141f008b70ba7f55266e1e8725b422bfe0e6213f8&
metrics:
- accuracy
model-index:
- name: vogue-fashion-collection-15
results: []
pipeline_tag: image-classification
vogue-fashion-collection-15
Model description
This model classifies an image into a fashion collection. It is trained on the tonyassi/vogue-runway-top15-512px dataset and fine-tuned version of google/vit-base-patch16-224-in21k.
Try the demo.
Dataset description
tonyassi/vogue-runway-top15-512px
- 15 fashion houses
- 1679 collections
- 87,547 images
How to use
from transformers import pipeline
# Initialize image classification pipeline
pipe = pipeline("image-classification", model="tonyassi/vogue-fashion-collection-15")
# Perform classification
result = pipe('image.png')
# Print results
print(result)
Examples
gucci,spring 2017 ready to wear
Training and evaluation data
It achieves the following results on the evaluation set:
- Loss: 0.1795
- Accuracy: 0.9454
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0