|
--- |
|
license: apache-2.0 |
|
base_model: google/vit-base-patch16-224-in21k |
|
tags: |
|
- generated_from_trainer |
|
widget: |
|
- src: >- |
|
https://cdn.discordapp.com/attachments/1120417968032063538/1191101288428097727/1.jpg?ex=65a43684&is=6591c184&hm=aed9f3278325ea30e30557e201adcfc43ce2ce77f2218b5f8f232a26b4ac2985& |
|
- src: >- |
|
https://cdn.discordapp.com/attachments/1120417968032063538/1191101301698867260/2.jpg?ex=65a43687&is=6591c187&hm=dee873150a2910177be30e5141f008b70ba7f55266e1e8725b422bfe0e6213f8& |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vogue-fashion-collection-15 |
|
results: [] |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
# vogue-fashion-collection-15 |
|
|
|
## Model description |
|
This model classifies an image into a fashion collection. It is trained on the [tonyassi/vogue-runway-top15-512px](https://huggingface.co/datasets/tonyassi/vogue-runway-top15-512px) dataset and fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). |
|
|
|
Try the [demo](https://huggingface.co/spaces/tonyassi/which-fashion-collection). |
|
|
|
## Dataset description |
|
[tonyassi/vogue-runway-top15-512px](https://huggingface.co/datasets/tonyassi/vogue-runway-top15-512px) |
|
- 15 fashion houses |
|
- 1679 collections |
|
- 87,547 images |
|
|
|
### How to use |
|
```python |
|
from transformers import pipeline |
|
|
|
# Initialize image classification pipeline |
|
pipe = pipeline("image-classification", model="tonyassi/vogue-fashion-collection-15") |
|
|
|
# Perform classification |
|
result = pipe('image.png') |
|
|
|
# Print results |
|
print(result) |
|
``` |
|
## Examples |
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/YWz7ZLk2Oa0xCvuUqVX3O.jpeg) |
|
**fendi,spring 2023 couture** |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/qRBLjPrbCt0EX181pmu7K.jpeg) |
|
**gucci,spring 2017 ready to wear** |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/648a824a8ca6cf9857d1349c/Ghd9kUxoCOyOeyJNfUtnh.jpeg) |
|
**prada,fall 2018 ready to wear** |
|
|
|
## Training and evaluation data |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1795 |
|
- Accuracy: 0.9454 |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 15 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.0 |
|
- Tokenizers 0.15.0 |