evaluation_model / README.md
viv6267's picture
End of training
27a33cc verified
metadata
library_name: peft
base_model: NousResearch/Llama-2-7b-hf
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: evaluation_model
    results: []

evaluation_model

This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7124
  • Accuracy: 0.4667
  • Precision: 0.4577
  • Recall: 0.9559
  • F1: 0.6190

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.9829 43 0.9195 0.5467 0.0 0.0 0.0
No log 1.9943 87 0.6833 0.5667 0.5172 0.6618 0.5806
No log 2.9829 130 0.6898 0.5267 0.4884 0.9265 0.6396
0.8708 3.9943 174 0.6775 0.5667 0.5149 0.7647 0.6154
0.8708 4.9371 215 0.7124 0.4667 0.4577 0.9559 0.6190

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.2
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3