|
--- |
|
library_name: peft |
|
base_model: NousResearch/Llama-2-7b-hf |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: evaluation_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# evaluation_model |
|
|
|
This model is a fine-tuned version of [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7124 |
|
- Accuracy: 0.4667 |
|
- Precision: 0.4577 |
|
- Recall: 0.9559 |
|
- F1: 0.6190 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 0.9829 | 43 | 0.9195 | 0.5467 | 0.0 | 0.0 | 0.0 | |
|
| No log | 1.9943 | 87 | 0.6833 | 0.5667 | 0.5172 | 0.6618 | 0.5806 | |
|
| No log | 2.9829 | 130 | 0.6898 | 0.5267 | 0.4884 | 0.9265 | 0.6396 | |
|
| 0.8708 | 3.9943 | 174 | 0.6775 | 0.5667 | 0.5149 | 0.7647 | 0.6154 | |
|
| 0.8708 | 4.9371 | 215 | 0.7124 | 0.4667 | 0.4577 | 0.9559 | 0.6190 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.13.2 |
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |