|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: nvidia/mit-b0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: segmentation_model_50ep_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# segmentation_model_50ep_2 |
|
|
|
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0151 |
|
- Mean Iou: 0.4992 |
|
- Mean Accuracy: 0.5002 |
|
- Overall Accuracy: 0.9980 |
|
- Per Category Iou: [0.9979567074182948, 0.0004395926441497546] |
|
- Per Category Accuracy: [0.9999017103951866, 0.00046175157765122367] |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:--------------------------------------------:|:--------------------------------------------:| |
|
| 0.0176 | 12.1951 | 1000 | 0.0153 | 0.4991 | 0.5001 | 0.9978 | [0.9978437819175541, 0.00041657987919183504] | [0.9997885648043022, 0.00046175157765122367] | |
|
| 0.0173 | 24.3902 | 2000 | 0.0153 | 0.4991 | 0.5001 | 0.9978 | [0.9978095148690534, 0.0004100657472081357] | [0.999754230969827, 0.00046175157765122367] | |
|
| 0.0144 | 36.5854 | 3000 | 0.0146 | 0.4991 | 0.5001 | 0.9980 | [0.9979986133831826, 0.00026932399676811203] | [0.9999440574585123, 0.00027705094659073417] | |
|
| 0.0208 | 48.7805 | 4000 | 0.0151 | 0.4992 | 0.5002 | 0.9980 | [0.9979567074182948, 0.0004395926441497546] | [0.9999017103951866, 0.00046175157765122367] | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.0 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.20.3 |
|
|